题目内容

7.已知函数$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≤2\\{log_2}x,x>2\end{array}\right.$,若?x0∈R,使得$f({x_0})≤5m-4{m^2}$成立,则实数m的取值范围为(  )
A.$[{-1,\frac{1}{4}}]$B.$[{\frac{1}{4},1}]$C.$[{-2,\frac{1}{4}}]$D.$[{\frac{1}{3},1}]$

分析 求出分段函数的最小值,然后求解不等式的解集即可.

解答 解:函数$f(x)=\left\{\begin{array}{l}{x^2}-2x+2,x≤2\\{log_2}x,x>2\end{array}\right.$,当x≤2时,函数是二次函数的一部分,二次函数的对称轴x=1,函数的最小值为:1.当x>2时.y=log2x>1,
若?x0∈R,使得$f({x_0})≤5m-4{m^2}$成立,
可得1≤5m-4m2,解得m∈$[\frac{1}{4},1]$.
故选:B.

点评 本题考查分段函数的应用,函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网