题目内容
8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,x),若$\overrightarrow{a}$•$\overrightarrow{b}$=3,则x=3.分析 直接利用向量垂直的坐标运算列式求解x值.
解答 解:$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,x),
由$\overrightarrow{a}$•$\overrightarrow{b}$=3,得2×3-x=3,解x=3.
故答案为:3.
点评 本题考查平面向量的数量积运算,考查向量垂直的坐标运算,是基础题.
练习册系列答案
相关题目
18.已知定义域为R的奇函数f(x)满足f(3-x)+f(x)=0,且当$x∈({-\frac{3}{2},0})$时,f(x)=log2(2x+7),则f(2017)=( )
| A. | -2 | B. | log23 | C. | 3 | D. | -log25 |
19.命题“?m∈[0,1],x+$\frac{1}{x}$≥2”的否定形式是( )
| A. | ?m∈[0,1],x+$\frac{1}{x}$<2 | B. | ?m∈[0,1],x+$\frac{1}{x}$≥2 | ||
| C. | ?m∈(-∞,0)∪(0,+∞),x+$\frac{1}{x}$≥2 | D. | ?m∈[0,1],x+$\frac{1}{x}$<2 |
16.已知F是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左焦点,设动点P在椭圆上,若直线FP的斜率大于$\sqrt{3}$,则直线OP(O为原点)的斜率的取值范围是( )
| A. | $({-∞,-\frac{3}{2}})$ | B. | $({-∞,-\frac{3}{2}}]∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}}]$ | C. | $({-∞,-\frac{3}{2}})∪({\frac{{3\sqrt{3}}}{8},\frac{3}{2}})$ | D. | $[{-\frac{3}{2},+∞})$ |