ÌâÄ¿ÄÚÈÝ
1£®ÔÚÊýÁÐ{an}ÖУ¬a1+2a2++22a3+¡2n-1an=£¨n•2n-2n+1£©t¶ÔÈÎÒân¡ÊN*³ÉÁ¢£¬ÆäÖг£Êýt£¾0£®Èô¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$µÄ½â¼¯Îª{n|n¡Ý4£¬n¡ÊN*}£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ[$\frac{7}{8}$£¬$\frac{15}{16}$£©£®·ÖÎö ÓÉÒÑÖªµÈʽ£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÖ¤Ã÷ÊýÁÐ{an}µÄͨÏ¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$»¯¼òΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®ÒÑÖªt£¾0£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇóbºÍcµÄȡֵ·¶Î§£®
½â´ð ½â£ºµ±n¡Ý2ʱ£¬a1+2a2++22a3+¡2n-1an=£¨n•2n-2n+1£©t¡¢Ù
µÃa1+2a2++22a3+¡2n-2an-1=[£¨n-1£©•2n-1-2n-1+1£©t¡¢Ú
½«¢Ù£¬¢ÚÁ½Ê½Ïà¼õ£¬µÃ 2n-1 an=£¨n•2n-2n+1£©t-[£¨n-1£©•2n-1-2n-1+1]t£¬
»¯¼ò£¬µÃan=nt£¬ÆäÖÐn¡Ý2£®¡£¨5·Ö£©
ÒòΪa1=t£¬ËùÒÔan=nt£¬ÆäÖÐn¡ÊN*£®
¡à${a}_{{2}^{n}}={2}^{n}t$£®
¡à$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡+$\frac{1}{{a}_{{2}^{n}}}$=$\frac{1}{2t}+\frac{1}{4t}+\frac{1}{8t}+¡+\frac{1}{{2}^{n}t}$=$\frac{1}{t}¡Á\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{n}}£©}{1-\frac{1}{2}}=\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©$
ÓÖ¡ß$\frac{1}{{a}_{1}}=\frac{1}{t}$£¬Ôò¹ØÓÚnµÄ²»µÈʽ$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{4}}$+$\frac{1}{{a}_{8}}$+¡+$\frac{1}{{a}_{{2}^{n}}}$£¾$\frac{m}{{a}_{1}}$»¯¼òΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®
µ±t£¾0ʱ£¬¿¼²ì²»µÈʽΪ$\frac{1}{t}£¨1-\frac{1}{{2}^{n}}£©£¾\frac{m}{t}$£®µÄ½â£¬
ÓÉÌâÒ⣬֪²»µÈʽ1-$\frac{1}{{2}^{n}}$£¾mµÄ½â¼¯Îª{n|n¡Ý4£¬n¡ÊN*}£¬
ÒòΪº¯Êýy=1-$\frac{1}{{2}^{x}}$ÔÚRÉϵ¥µ÷µÝÔö£¬ËùÒÔÖ»ÒªÇó1-$\frac{1}{{2}^{4}}£¾m$ ÇÒ1-$\frac{1}{{2}^{3}}$¡Üm¼´¿É£¬¡à$\frac{7}{8}¡Üm£¼\frac{15}{16}$£®
ËùÒÔ£¬ÊµÊýmµÄȡֵ·¶Î§ÊÇ[$\frac{7}{8}£¬\frac{15}{16}$£©£®
¹Ê´ð°¸Îª£º[$\frac{7}{8}£¬\frac{15}{16}$£©£®
µãÆÀ ±¾Ì⿼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{3}{8}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{9\sqrt{3}}{8}$ | D£® | $\frac{9\sqrt{3}}{4}$ |