题目内容
20.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则椭圆C的离心率e的取值范围是[$\frac{\sqrt{2}}{2}$,1).分析 由题意可知:△PF1F2是以P为直角顶点的直角三角形,则丨$\overrightarrow{P{F}_{1}}$丨2+丨$\overrightarrow{P{F}_{2}}$丨2=丨$\overrightarrow{{F}_{1}{F}_{2}}$丨2,由(丨$\overrightarrow{P{F}_{1}}$丨+丨$\overrightarrow{P{F}_{2}}$丨)2≤2(丨$\overrightarrow{P{F}_{1}}$丨2+丨$\overrightarrow{P{F}_{2}}$丨2)=2丨$\overrightarrow{{F}_{1}{F}_{2}}$丨2=8c2,e=$\frac{c}{a}$=$\frac{丨\overrightarrow{{F}_{1}{F}_{2}}丨}{丨\overrightarrow{P{F}_{1}}丨+丨\overrightarrow{P{F}_{2}}丨}$≥$\frac{2c}{2\sqrt{2}c}$=$\frac{\sqrt{2}}{2}$,由0<e<1,即可求得椭圆C的离心率e的取值范围.
解答 解:椭圆上存在点使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
∴$\overrightarrow{P{F}_{1}}$⊥$\overrightarrow{P{F}_{2}}$,
∴△PF1F2是以P为直角顶点的直角三角形,
∵丨$\overrightarrow{P{F}_{1}}$丨+丨$\overrightarrow{P{F}_{2}}$丨=2a,丨$\overrightarrow{{F}_{1}{F}_{2}}$丨=2c,
椭圆的离心率e=$\frac{c}{a}$=$\frac{丨\overrightarrow{{F}_{1}{F}_{2}}丨}{丨\overrightarrow{P{F}_{1}}丨+丨\overrightarrow{P{F}_{2}}丨}$,
由(丨$\overrightarrow{P{F}_{1}}$丨+丨$\overrightarrow{P{F}_{2}}$丨)2≤2(丨$\overrightarrow{P{F}_{1}}$丨2+丨$\overrightarrow{P{F}_{2}}$丨2)=2丨$\overrightarrow{{F}_{1}{F}_{2}}$丨2=8c2,
∴e=$\frac{c}{a}$=$\frac{丨\overrightarrow{{F}_{1}{F}_{2}}丨}{丨\overrightarrow{P{F}_{1}}丨+丨\overrightarrow{P{F}_{2}}丨}$≥$\frac{2c}{2\sqrt{2}c}$=$\frac{\sqrt{2}}{2}$,
由0<e<1
∴该椭圆的离心率的取值范围是[$\frac{\sqrt{2}}{2}$,1),
故答案为[$\frac{\sqrt{2}}{2}$,1).
点评 本题考查椭圆的标准的标准方程及简单几何性质,考查基本不等式的应用,属于中档题.
| A. | (10,0) | B. | (0,4) | C. | (-6,-4) | D. | (6,-1) |
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
| A. | 27 | B. | 36 | C. | 5 | D. | 6 |