ÌâÄ¿ÄÚÈÝ
5£®¸ø³öÏÂÁÐÎåÖÖ˵·¨£º£¨1£©·½³Ì2x-x2=0ÓÐÁ½½â£®
£¨2£©Èôº¯Êýy=f£¨x£©ÊǺ¯Êýy=ax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ·´º¯Êý£¬ÇÒf£¨2£©=2£¬Ôòa=2£®
£¨3£©ÈýÀâ×¶V-ABCÖУ¬VA=VB=AC=BC=2£¬AB=2$\sqrt{3}$£¬VC=1£¬Ôò¶þÃæ½ÇV-AB-CµÄ´óСΪ60¡ã£®
£¨4£©ÒÑÖªº¯Êýf£¨x£©ÎªRÉÏµÄÆæº¯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=x£¨x+1£©£®Èôf£¨a£©=-2£¬ÔòʵÊýa=-1£®
£¨5£©Èôy=f£¨x£©ÔÚ¶¨ÒåÓò£¨-1£¬1£©ÉÏÊǼõº¯Êý£¬ÇÒf£¨1-a£©£¼f£¨2a-1£©£¬ÔòʵÊýa£¼$\frac{2}{3}$£®
ÆäÖÐÕýȷ˵·¨µÄÐòºÅÊÇ£¨3£©£¨4£©£®
·ÖÎö ¶Ô5¸öÃüÌâ·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð
½â£º£¨1£©Ô·½³Ì¿É»¯Îª£º2x=x2£¬ÔÚÍ¬Ò»×ø±êϵÖл³öº¯Êýy=2xÓëy=x2µÄͼÏó
ÈçͼËùʾ£ºÓÉͼÏó¿ÉµÃ£¬Á½¸öº¯ÊýµÄͼÏó¹²ÓÐ3¸ö½»µã£¬Ò»¸öµãµÄºá×ø±êСÓÚ0£¬ÁíÒ»¸öµÄºá×ø±êΪ2£¬»¹Óкá×ø±êÒ»¸öÊÇ4£»¹Ê·½³Ìx2-2x=0µÄʵÊý½âµÄ¸öÊýÊÇ3¸ö£¬¹Ê²»ÕýÈ·£»
£¨2£©Èôº¯Êýy=f£¨x£©ÊǺ¯Êýy=ax£¨a£¾0£¬ÇÒa¡Ù1£©µÄ·´º¯Êý£¬ÇÒf£¨2£©=2£¬Ôòa2=2£¬a=$\sqrt{2}$£¬²»ÕýÈ·£®
£¨3£©È¡ABµÄÖеãΪD£¬Á¬½ÓVD£¬CD£®
¡ßVA=VB£¬¡àAB¡ÍVD£»
ͬÀíAB¡ÍCD£®
ËùÒÔ¡ÏVDCÊǶþÃæ½ÇV-AB-CµÄÆ½Ãæ½Ç£®
ÓÉÌâÉè¿ÉÖªVD=CD=1£¬¼´¡ÏVDC=60¡ã£®
¹Ê¶þÃæ½ÇV-AB-CµÄ´óСΪ60¡ã£®ÕýÈ·£®
£¨4£©Áîx£¼0£¬Ôò-x£¾0£¬ËùÒÔf£¨-x£©=-x£¨1-x£©£¬![]()
ÓÖf£¨x£©ÎªÆæº¯Êý£¬ËùÒÔµ±x£¼0ʱÓÐf£¨x£©=x£¨1-x£©£¬
Áîf£¨a£©=a£¨1-a£©=-2£¬µÃa2-a-2=0£¬
½âµÃa=-1»òa=2£¨ÉáÈ¥£©£®ÕýÈ·£®
£¨5£©¡ßf£¨x£©ÔÚ¶¨ÒåÓò£¨-1£¬1£©ÉÏÊǼõº¯Êý£¬ÇÒf£¨1-a£©£¼f£¨2a-1£©
¡à$\left\{\begin{array}{l}{-1£¼1-a£¼1}\\{-1£¼2a-1£¼1}\\{1-a£¾2a-1}\end{array}\right.$£¬0£¼a£¼$\frac{2}{3}$£®ÕýÈ·
¹Ê´ð°¸Îª£º£¨3£©£¨4£©
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÖªÊ¶×ÛºÏÐÔÇ¿£¬ÊôÓÚÖеµÌ⣮
| A£® | 36¦Ð | B£® | 9¦Ð | C£® | 20¦Ð | D£® | 16¦Ð |