题目内容

过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于2,则这样的直线(  )
A、有且仅有一条
B、有且仅有两条
C、有无穷多条
D、不存在
考点:直线与圆锥曲线的关系
专题:综合题,圆锥曲线的定义、性质与方程
分析:过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,先看直线AB斜率不存在时,求得横坐标之和等于2,符合题意;进而设直线AB为y=k(x-1)与抛物线方程联立消去y,进而根据韦达定理表示出A、B两点的横坐标之和,方程无解,进而得出结论.
解答: 解:过抛物线y2=4x的焦点作一条直线与抛物线相交于A、B两点,
若直线AB的斜率不存在,则横坐标之和等于2,适合.
故设直线AB的斜率为k,则直线AB方程为y=k(x-1)
代入抛物线y2=4x得,k2x2-2(k2+2)x+k2=0
∵A、B两点的横坐标之和等于2,
2(k2+2)
k2
=2

∴方程无解,
∴这样的直线不存在.
故选A.
点评:本题主要考查了直线与抛物线的位置关系,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网