题目内容
3.若当x∈R时,函数f(x)=a|x|(a>0且a≠0)始终满足f(x)≥1,则函数$y=\frac{{{{log}_a}|x|}}{x^3}$的大致图象大致是( )| A. | B. | C. | D. |
分析 利用指数函数的性质求出a的范围,判断函数的奇偶性排除选项,利用特殊值判断即可.
解答 解:当x∈R时,函数f(x)=a|x|(a>0且a≠0)始终满足f(x)≥1,
可得a>1,
则函数$y=\frac{{{{log}_a}|x|}}{x^3}$是奇函数,可知B不正确;
当x→0+,时,函数$y=\frac{{{{log}_a}|x|}}{x^3}$<0,排除A,
当x=a10时,函数$y=\frac{{{{log}_a}|x|}}{x^3}$=$\frac{10}{{a}^{30}}$→0,排除D,
故选:C.
点评 本题考查函数的图象的判断与应用,注意函数的奇偶性,指数函数的性质,特殊值的判断与应用.
练习册系列答案
相关题目
6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,则P的元素有( )个.
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

表中wi=$\sqrt{x_i}$,$\overline w=\frac{1}{8}\sum_{i=1}^8{w_i}$
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.
| $\overline x$ | $\overline y$ | $\overline w$ | ${\sum_{i=1}^8{({x_i}-\overline x)}^2}$ | ${\sum_{i=1}^8{({w_i}-\overline w)}^2}$ | $\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$ | $\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$ |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.