题目内容
13.已知全集U=R,集合M=$\left\{{x\left|{\frac{2-x}{x+3}}\right.<0}\right\}$,则∁RM={x|-3≤x≤2}.分析 根据补集的定义进行求解即可.
解答 解:M=$\left\{{x\left|{\frac{2-x}{x+3}}\right.<0}\right\}$={x|(2-x)(x+3)<0}={x|(x-2)(x+3)>0}={x|x>2或x<-3},
则∁RM={x|-3≤x≤2},
故答案为:{x|-3≤x≤2}
点评 本题主要考查集合的基本运算,根据补集的定义结合分式不等式的解法是解决本题的关键.
练习册系列答案
相关题目
3.函数f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零点一定位于区间( )
| A. | (0,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
18.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为36,焦距为12,则椭圆的方程为( )
| A. | $\frac{x^2}{36}+\frac{y^2}{64}=1$ | B. | $\frac{x^2}{100}+\frac{y^2}{64}=1$ | ||
| C. | $\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$ | D. | $\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$ |
2.函数y=loga(2-ax)在[0,1]上为减函数,则实数a的取值范围是( )
| A. | 1<a<2 | B. | $\frac{1}{2}$<a<1 | C. | $\frac{1}{2}$<a<2 | D. | a=$\frac{1}{2}$ |