题目内容
已知f(x+
)=x3+
,求f(x)的解析式.
| 1 |
| x |
| 1 |
| x3 |
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:由立方和公式和配凑法可得f(x+
)=(x+
)[(x+
)2-3],可得f(x)=x(x2-3)
| 1 |
| x |
| 1 |
| x |
| 1 |
| x |
解答:
解:∵f(x+
)=x3+
=x3+(
)3
=(x+
)(x2-x•
+
)
=(x+
)(x2+
+2-3)
=(x+
)[(x2+
+2•x•
)-3]
=(x+
)[(x+
)2-3],
∴f(x)的解析式为:f(x)=x(x2-3)=x3-3x,
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x |
=(x+
| 1 |
| x |
| 1 |
| x |
| 1 |
| x2 |
=(x+
| 1 |
| x |
| 1 |
| x2 |
=(x+
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
=(x+
| 1 |
| x |
| 1 |
| x |
∴f(x)的解析式为:f(x)=x(x2-3)=x3-3x,
点评:本题考查函数解析式的求解方法,涉及立方和公式和配凑法,属基础题.
练习册系列答案
相关题目
若(
)x=8.则log27x2=( )
| 1 |
| 2 |
| A、2 | ||
B、-
| ||
C、
| ||
D、
|