题目内容

10.如图,AA1B1B是圆柱的轴截面,C是底面圆周上异于A,B的一点,AA1=AB=2.
(1)求证:平面AA1C⊥平面BA1C;
(2)若AC=BC,求几何体A1-ABC的体积V.

分析 (1)证明BC⊥平面AA1C,即可证明平面AA1C⊥平面BA1C;
(2)求出AC,直接利用体积公式求解即可.

解答 (1)证明:因为C是底面圆周上异于A,B的一点,AB是底面圆的直径,
所以AC⊥BC.
因为AA1⊥平面ABC,BC?平面ABC,所以AA1⊥BC,
而AC∩AA1=A,所以BC⊥平面AA1C.
又BC?平面BA1C,所以平面AA1C⊥平面BA1C.…(6分)
(2)解:在Rt△ABC中,AB=2,则由AB2=AC2+BC2且AC=BC,
得$AC=BC=\sqrt{2}$,
所以${V_{{A_1}-ABC}}=\frac{1}{3}{S_{△ABC}}•A{A_1}=\frac{1}{3}•\frac{1}{2}•\sqrt{2}•\sqrt{2}•2=\frac{2}{3}$.…(12分)

点评 本题考查线面垂直的判定,考查平面与平面垂直,考查几何体A1-ABC的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网