题目内容
3.不等式x2-5x≤0的解集是{x|0≤x≤5}.分析 把不等式x2-5x≤0化为x(x-5)≤0,求出解集即可.
解答 解:不等式x2-5x≤0可化为
x(x-5)≤0,
解得0≤x≤5,
∴不等式的解集是{x|0≤x≤5}.
故答案为:{x|0≤x≤5}.
点评 本题考查了一元二次不等式的解法与应用问题,是基础题.
练习册系列答案
相关题目
13.若函数y=f(x)同时具有下列三个性质:(1)最小正周期为π;(2)在$x=\frac{π}{3}$时取得最大值1;(3)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上是增函数.则y=f(x)的解析式可以是( )
| A. | $y=sin({\frac{x}{2}+\frac{π}{6}})$ | B. | $y=cos({2x+\frac{π}{3}})$ | C. | $y=sin({2x-\frac{π}{6}})$ | D. | $y=cos({2x-\frac{π}{6}})$ |
14.设a、b∈R,则“a3>b3且ab<0”是“$\frac{1}{a}$>$\frac{1}{b}$”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
12.设由不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{y+2≥0}\\{x+y+2≤0}\end{array}\right.$表示的平面区域为Ω,P∈Ω,过点P作圆O:x2+y2=1的两条切线,切点分别为A、B,记∠APB=α,则当α最小时,cosα=( )
| A. | $\frac{\sqrt{95}}{10}$ | B. | $\frac{19}{20}$ | C. | $\frac{9}{10}$ | D. | $\frac{1}{2}$ |
13.已知集合M={x|-1≤x≤1},N={x|$\frac{x}{x-1}$≤0},则M∩N=( )
| A. | {x|0≤x≤1} | B. | {x|0≤x<1} | C. | {x|-1≤x≤0} | D. | {x|-1≤x≤0} |