题目内容
4.下列说法正确的是( )①|$\sqrt{(x+4)^{2}+{y}^{2}}$|-|$\sqrt{(x-4)^{2}+{y}^{2}}$=0
②|$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$=14
③|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=6
④|$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$|=18.
| A. | ①表示无轨迹 ②的轨迹是射线 | B. | ②的轨迹是椭圆 ③的轨迹是双曲线 | ||
| C. | ①的轨迹是射线④的轨迹是直线 | D. | ②、④均表示无轨迹 |
分析 利用几何意义,结合椭圆、双曲线的定义,即可得出结论.
解答 解:$\sqrt{(x+4)^{2}+{y}^{2}}$-$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距离的差;$\sqrt{(x+4)^{2}+{y}^{2}}$+$\sqrt{(x-4)^{2}+{y}^{2}}$,表示(x,y),到(-4,0),(4,0)距离的和,
结合选项,可知②的轨迹是椭圆 ③的轨迹是双曲线,
故选B.
点评 本题考查椭圆、双曲线的定义,考查学生分析解决问题的能力,正确理解椭圆、双曲线的定义是关键.
练习册系列答案
相关题目
8.定义域为R的函数f(x)对任意x都有f(1+x)=f(1-x),且其导数f′(x)满足(x-1)f′(x)>0,则当2<m<4时,有( )
| A. | f(2)>f(2m)>f(log2m) | B. | f(log2m)>f(2m)>f(2) | C. | f(2m)>f(log2m)>f(2) | D. | f(2m)>f(2)>f(log2m) |
9.不等式(x+1)(2-x)≥0的解集为( )
| A. | {x|-l≤x≤2} | B. | {x|-1<x<2} | C. | {x|x≥2,或-1≤-1} | D. | {x|x>2,或x<-1} |
16.若抛物线y2=8x上一点P到其焦点的距离为9,则点P的坐标为( )
| A. | (7,±$\sqrt{14}$) | B. | (14,±$\sqrt{14}$) | C. | (7,±2$\sqrt{14}$) | D. | (-7,±2$\sqrt{14}$) |
14.已知椭圆的标准方程为${x^2}+\frac{y^2}{10}=1$,则椭圆的焦点坐标为( )
| A. | (-3,0),(3,0) | B. | (0,-3),(0,3) | C. | (-$\sqrt{10}$,0),($\sqrt{10}$,0) | D. | (0,-$\sqrt{10}$),(0,$\sqrt{10}$) |