题目内容
1.( I)求抛物线τ的方程;
(Ⅱ)若k1-k2=2,点D是点B,C处切线的交点,记△BCD的面积为S,证明S为定值.
分析 (Ⅰ)设A(x0,y0),可知F(0,$\frac{p}{2}$),故$\overrightarrow{A{F}_{1}}=(-{x}_{0},\frac{p}{2}-{y}_{0})=(2,0)$.求得A坐标,代入x2=2py,得p=2.即可
(Ⅱ)过D作y轴的平行线交BC于点E,.并设B(${x}_{1},\frac{{{x}_{1}}^{2}}{4}$),C(${x}_{2},\frac{{{x}_{2}}^{2}}{4}$),由${k}_{2}-{k}_{1}=\frac{\frac{{{x}_{2}}^{2}}{4}-1}{{x}_{2}+2}-\frac{\frac{{{x}_{1}}^{2}}{4}-1}{{x}_{1}+2}=\frac{{x}_{2}-{x}_{1}}{4}$=2,得x2-x1=8.联立直线、直线方程得$\left\{\begin{array}{l}{{x}_{D}=\frac{{x}_{1}+{x}_{2}}{2}}\\{{y}_{D}=\frac{{x}_{1}{x}_{2}}{4}}\end{array}\right.$.由题意${y}_{E}=\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{8}$,即可求△BCD的面积为S=$\frac{1}{2}$×ED×(x2-x1)=$\frac{1}{2}({y}_{E}-{y}_{D})({x}_{2}-{x}_{1})$=$\frac{1}{2}×\frac{({x}_{2}-{x}_{1})^{2}}{8}×({x}_{2}-{x}_{1})=32$(定值)
解答 解:(Ⅰ)设A(x0,y0),可知F(0,$\frac{p}{2}$),故$\overrightarrow{A{F}_{1}}=(-{x}_{0},\frac{p}{2}-{y}_{0})=(2,0)$.
∴$\left\{\begin{array}{l}{{x}_{0}=-2}\\{{y}_{0}=\frac{p}{2}}\end{array}\right.$,代入x2=2py,得p=2.
∴抛物线τ的方程为x2=4y.
(Ⅱ)过D作y轴的平行线交BC于点E,并设B(${x}_{1},\frac{{{x}_{1}}^{2}}{4}$),C(${x}_{2},\frac{{{x}_{2}}^{2}}{4}$),
由(Ⅰ)得A(-2,1).
${k}_{2}-{k}_{1}=\frac{\frac{{{x}_{2}}^{2}}{4}-1}{{x}_{2}+2}-\frac{\frac{{{x}_{1}}^{2}}{4}-1}{{x}_{1}+2}=\frac{{x}_{2}-{x}_{1}}{4}$=2,
∴x2-x1=8.
直线DBy=$\frac{{x}_{1}}{2}x-\frac{{{x}_{1}}^{2}}{4}$,直线CDy=$\frac{{x}_{2}}{2}x-\frac{{{x}_{2}}^{2}}{4}$,解得$\left\{\begin{array}{l}{{x}_{D}=\frac{{x}_{1}+{x}_{2}}{2}}\\{{y}_{D}=\frac{{x}_{1}{x}_{2}}{4}}\end{array}\right.$.
∴直线BC的方程为y-$\frac{{{x}_{1}}^{2}}{4}$=$\frac{{x}_{1}+{x}_{2}}{4}(x-{x}_{1})$,将xD代入得${y}_{E}=\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{8}$.
∴△BCD的面积为S=$\frac{1}{2}$×ED×(x2-x1)=$\frac{1}{2}({y}_{E}-{y}_{D})({x}_{2}-{x}_{1})$=$\frac{1}{2}×\frac{({x}_{2}-{x}_{1})^{2}}{8}×({x}_{2}-{x}_{1})=32$(定值)
点评 本题考查了抛物线的方程,抛物线与直线的位置关系,属于中档题,
| A. | $\frac{8}{3}$ | B. | 2 | C. | 1 | D. | $\frac{2}{3}$ |
| A. | $\sqrt{3}$ | B. | 3 | C. | 2 | D. | $2\sqrt{3}$ |