题目内容

17.设x>0,由不等式x+$\frac{1}{x}$>2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,类比推广到x+$\frac{a}{{x}^{n}}$≥n+1,则a=(  )
A.nnB.n2C.2nD.n

分析 由已知中不等式:x+$\frac{1}{x}$>2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,类比推理归纳不等式两边各项的变化规律,可得答案.

解答 解:由已知中不等式:x+$\frac{1}{x}$>2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,类比推广到x+$\frac{a}{{x}^{n}}$≥n+1,

归纳可得:不等式左边第一项为x.第二项为$\frac{{n}^{n}}{{x}^{n}}$,右边为n+1,
故第n个不等式为:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,
故a=nn
故选A.

点评 本题考查了归纳推理,根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网