ÌâÄ¿ÄÚÈÝ
1£®¼ºÖªÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÈôÊýÁÐ{cn}Âú×ã¸÷Ïî¾ùΪÕýÏ²¢ÇÒÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬Ôò³ÆÊýÁÐ{cn}Ϊ¡°Å×ÎïÊýÁС±£¬¼ºÖªÊýÁÐ{bn}Ϊ¡°Å×ÎïÊýÁС±£¬Ôò£¨¡¡¡¡£©| A£® | {bn}Ò»¶¨ÎªµÈ±ÈÊýÁÐ | B£® | {bn}Ò»¶¨ÎªµÈ²îÊýÁÐ | ||
| C£® | ´ÓµÚ¶þÏîÆð{bn}Ò»¶¨ÎªµÈ±ÈÊýÁÐ | D£® | ´ÓµÚ¶þÏîÆð{bn}Ò»¶¨ÎªµÈ²îÊýÁÐ |
·ÖÎö ÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬¿ÉµÃTn=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$£¬µ±n=1ʱ£¬c1=T1£¬c1£¾0£¬½âµÃc1=$\frac{1+\sqrt{1-\frac{8b}{a}}}{2}$£»
µ±n¡Ý2ʱ£¬cn=Tn-Tn-1£¬»¯Îª£º£¨cn+cn-1£©£¨cn-cn-1-1£©=0£¬¿ÉµÃcn-cn-1=1£¬¶Ôb·ÖÀàÌÖÂÛ£¬¼´¿ÉÅжϳö£®
½â´ð ½â£º¡ßÒÔ£¨cn£¬Tn£©£¨n¡ÊN*£©Îª×ø±êµÄµã¶¼ÔÚÇúÏßay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b£¬£¨aΪ·Ç0³£Êý£©ÉÏÔ˶¯£¬
¡àTn=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$£¬
µ±n=1ʱ£¬c1=T1=$\frac{1}{2}{c}_{1}^{2}+\frac{1}{2}{c}_{1}$+$\frac{b}{a}$£¬c1£¾0£¬½âµÃc1=$\frac{1+\sqrt{1-\frac{8b}{a}}}{2}$£®
µ±n¡Ý2ʱ£¬cn=Tn-Tn-1=$\frac{1}{2}{c}_{n}^{2}$+$\frac{1}{2}{c}_{n}$+$\frac{b}{a}$-$£¨\frac{1}{2}{c}_{n-1}^{2}+\frac{1}{2}{c}_{n-1}+\frac{b}{a}£©$£¬»¯Îª£º£¨cn+cn-1£©£¨cn-cn-1-1£©=0£¬
¡ßcn+cn-1£¾0£¬
¡àcn-cn-1=1£¬
µ±b=0ʱ£¬ÊýÁÐ{cn}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ1£®
µ±b¡Ù0£¬$1-\frac{8b}{a}$¡Ý0ʱ£¬ÊýÁÐ{cn}´ÓµÚ¶þÏîÆðΪµÈ²îÊýÁУ¬Ê×ÏîΪc2=2£¬¹«²îΪ1£®
×ÛÉϿɵãºÊýÁÐ{cn}´ÓµÚ¶þÏîÆðÒ»¶¨ÎªµÈ²îÊýÁУ®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢µÈ²îÊýÁе͍Ò壬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | $\frac{3}{2}$ | B£® | 3 | C£® | $\sqrt{3}$ | D£® | 2 |
| A£® | $\frac{1}{4}$£¬¦Ð | B£® | $\frac{1}{4}$£¬$\frac{¦Ð}{2}$ | C£® | $\frac{1}{2}$£¬¦Ð | D£® | $\frac{1}{2}$£¬$\frac{¦Ð}{2}$ |
| A£® | y=x3 | B£® | y=ex | C£® | y=x2+1 | D£® | y=ln|x| |