ÌâÄ¿ÄÚÈÝ
7£®Ä³Ð£¸ßÒ»Äê¼¶Óмס¢ÒÒ¡¢±ûÈýλѧÉú£¬ËûÃǵÚÒ»´Î¡¢µÚ¶þ´Î¡¢µÚÈý´ÎÔ¿¼µÄÎïÀí³É¼¨Èç±í£º| µÚÒ»´ÎÔ¿¼ÎïÀí³É¼¨ | µÚ¶þ´ÎÔ¿¼ÎïÀí³É¼¨ | µÚÈý´ÎÔ¿¼ÎïÀí³É¼¨ | |
| ѧÉú¼× | 80 | 85 | 90 |
| ѧÉúÒÒ | 81 | 83 | 85 |
| ѧÉú±û | 90 | 86 | 82 |
| A£® | ¼×¡¢ÒÒ¡¢±ûµÚÈý´ÎÔ¿¼ÎïÀí³É¼¨µÄƽ¾ùÊýΪ86 | |
| B£® | ÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬¼×µÄ³É¼¨Æ½¾ù·Ö×î¸ß | |
| C£® | ÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬Òҵijɼ¨×îÎȶ¨ | |
| D£® | ÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬±ûµÄ³É¼¨·½²î×î´ó |
·ÖÎö ·Ö±ðÇó³öƽÊý¡¢·½²î£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
½â´ð ½â£ºÔÚAÖУ¬¼×¡¢ÒÒ¡¢±ûµÚÈý´ÎÔ¿¼ÎïÀí³É¼¨µÄƽ¾ùÊýΪ$\overline{x}$=$\frac{1}{3}£¨90+85+82£©$¡Ö85.7£¬¹ÊA´íÎó£»
ÔÚBÖУ¬$\overline{{x}_{¼×}}$=$\frac{1}{3}£¨80+85+90£©$=85£¬$\overline{{x}_{ÒÒ}}$=$\frac{1}{3}$£¨81+83+85£©=83£¬$\overline{{x}_{±û}}$=$\frac{1}{3}£¨90+86+82£©$=86£¬
¡àÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬±ûµÄ³É¼¨Æ½¾ù·Ö×î¸ß£¬¹ÊB´íÎó£»
ÔÚCÖУ¬${{S}_{¼×}}^{2}$=$\frac{1}{3}[£¨80-85£©^{2}+£¨85-85£©^{2}+£¨90-85£©^{2}]$=$\frac{50}{3}$£¬
${{S}_{ÒÒ}}^{2}$=$\frac{1}{3}$[£¨81-83£©2+£¨83-83£©2+£¨85-83£©2]=$\frac{8}{3}$£¬
${{S}_{±û}}^{2}$=$\frac{1}{3}$[£¨90-86£©2+£¨86-86£©2+£¨82-86£©2]=$\frac{32}{3}$£¬
¡àÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬Òҵijɼ¨×îÎȶ¨£¬¹ÊCÕýÈ·£»
ÔÚDÖУ¬ÔÚÕâÈý´ÎÔ¿¼ÎïÀí³É¼¨ÖУ¬¼×µÄ³É¼¨·½²î×î´ó£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºD£®
µãÆÀ ±¾Ì⿼²éƽ¾ùÊý¡¢·½²îµÄÇ󷨼°Ó¦Ó㬿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓë·½³Ì˼Ï룬ÊÇ»ù´¡Ì⣮
| A£® | $2¡À\sqrt{3}$ | B£® | $2+\sqrt{3}$ | C£® | $\sqrt{3}¡À1$ | D£® | $\sqrt{3}-1$ |
¢Ù´Ó10ºÐËáÄÌÖгéÈ¡3ºÐ½øÐÐʳƷÎÀÉú¼ì²é£®
¢Ú¿Æ¼¼±¨¸æÌüÓÐ32ÅÅ£¬Ã¿ÅÅÓÐ40¸ö×ù룬ÓÐÒ»´Î±¨¸æ»áÇ¡ºÃ×øÂúÁËÌýÖÚ£¬±¨¸æ»á½áÊøºó£¬ÎªÁËÌýÈ¡Òâ¼û£¬
ÐèÒªÇë32ÃûÌýÖÚ½øÐÐ×ù̸£®
¢Û¸ßÐÂÖÐѧ¹²ÓÐ160Ãû½ÌÖ°¹¤£¬ÆäÖÐÒ»°ã½Ìʦ120Ãû£¬ÐÐÕþÈËÔ±16Ãû£¬ºóÇÚÈËÔ±24Ãû£¬ÎªÁËÁ˽â½ÌÖ°¹¤¶ÔѧУÔÚ
УÎñ¹«¿ª·½ÃæµÄÒâ¼û£¬Äâ³éȡһ¸öÈÝÁ¿Îª20µÄÑù±¾£®
½ÏΪºÏÀíµÄ³éÑù·½·¨ÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù¼òµ¥Ëæ»ú³éÑù£¬¢Úϵͳ³éÑù£¬¢Û·Ö²ã³éÑù | |
| B£® | ¢Ù¼òµ¥Ëæ»ú³éÑù£¬¢Ú·Ö²ã³éÑù£¬¢Ûϵͳ³éÑù | |
| C£® | ¢Ùϵͳ³éÑù£¬¢Ú¼òµ¥Ëæ»ú³éÑù£¬¢Û·Ö²ã³éÑù | |
| D£® | ¢Ù·Ö²ã³éÑù£¬¢Úϵͳ³éÑù£¬¢Û¼òµ¥Ëæ»ú³éÑù |
| A£® | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 | B£® | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1»ò$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 | ||
| C£® | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1 | D£® | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1»ò$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1 |
| A£® | $\frac{3}{4}$ | B£® | $\frac{1}{2}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{1}{4}$ |