题目内容

2.已知函数$f(x)=\frac{x^2}{{1+{x^2}}}$.
(1)分别求$f(2)+f({\frac{1}{2}}),f(3)+f({\frac{1}{3}}),f(4)+f({\frac{1}{4}})$的值,并归纳猜想一般性结论(不要求证明);
(2)求值:$2f(2)+2f(3)+…+2f({2017})+f({\frac{1}{2}})+f({\frac{1}{3}})+…f({\frac{1}{2017}})+\frac{1}{2^2}f(2)+\frac{1}{3^2}f(3)+…+\frac{1}{{{{2017}^2}}}•f({2017})$.

分析 (1)代值计算即可,并猜想一般的结论,
(2)由(1)$f(x)+f({\frac{1}{x}})=1$,即可得出结论.

解答 解:(1)∵$f(x)=\frac{x^2}{{1+{x^2}}}$,
∴$f(2)+f({\frac{1}{2}})=\frac{2^2}{{1+{2^2}}}+\frac{{{{({\frac{1}{2}})}^2}}}{{1+{{({\frac{1}{2}})}^2}}}=\frac{2^2}{{1+{2^2}}}+\frac{1}{{1+{2^2}}}=1$,
同理可得$f(3)+f({\frac{1}{3}})=1,f(4)+f({\frac{1}{4}})=1$,
猜想$f(x)+f({\frac{1}{x}})=1$.
(2)∵$f(x)+\frac{1}{x^2}f(x)=\frac{x^2}{{1+{x^2}}}({1+\frac{1}{x^2}})=1$,
又由(1)得,$f(x)+f({\frac{1}{x}})=1$,
则$2f(2)+2f(3)+…2f({2017})+f({\frac{1}{2}})+f({\frac{1}{3}})+…f({\frac{1}{2017}})+\frac{1}{2^2}f(2)+\frac{1}{3^2}f(3)+…\frac{1}{{{{2017}^2}}}f({2017})$
=$[{f(2)+f({\frac{1}{2}})+f(2)+\frac{1}{2^2}f({\frac{1}{2}})}]+[{f(3)+f({\frac{1}{3}})+f(3)+\frac{1}{3^2}f({\frac{1}{3}})}]+$$…[{f({2017})+f({\frac{1}{2017}})+f({2017})+\frac{1}{{{{2017}^2}}}f({\frac{1}{2017}})}]=2×2016=4032$.

点评 本题考查归纳推理,考查学生的计算能力,正确归纳是关键,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网