ÌâÄ¿ÄÚÈÝ
ijÉ̵êÔ¤±¸ÔÚÒ»¸öÔÂÄÚ·ÖÅú¹ºÈëÿÕżÛֵΪ20ÔªµÄÊé×À¹²36ÕÅ,ÿÅú¶¼¹ºÈëxÕÅ(xÊÇÕýÕûÊý),ÇÒÿÅú¾ùÐ踶ÔË·Ñ4Ôª,´¢´æ¹ºÈëµÄÊé×ÀÒ»¸öÔÂËù¸¶µÄ±£¹Ü·ÑÓëÿÅú¹ºÈëÊé×ÀµÄ×ܼÛÖµ(²»º¬ÔË·Ñ)³ÉÕý±È,ÈôÿÅú¹ºÈë4ÕÅ,Ôò¸ÃÔÂÐèÓÃÈ¥Ô˷Ѻͱ£¹Ü·Ñ¹²52Ôª,ÏÖÔÚÈ«ÔÂÖ»ÓÐ48Ôª×ʽð¿ÉÒÔÓÃÓÚÖ§¸¶Ô˷Ѻͱ£¹Ü·Ñ.
(1)Çó¸ÃÔÂÐèÓÃÈ¥µÄÔ˷Ѻͱ£¹Ü·ÑµÄ×Ü·ÑÓÃf(x);
(2)ÄÜ·ñÇ¡µ±µØ°²ÅÅÿÅú½ø»õµÄÊýÁ¿,ʹ×ʽð¹»ÓÃ?д³öÄãµÄ½áÂÛ,²¢ËµÃ÷ÀíÓÉ.
½â:(1)ÉèÌâÖбÈÀýϵÊýΪk,ÿÅú¹ºÈëxÕÅÊé×À,
Ôò¹²Ðè·Ö
Åú,ÿÅú¼ÛֵΪ20xÔª,
ÓÉÌâÒâµÃf(x)=
¡¤4+k¡¤20x.
ÓÉx=4ʱ,f(x)=52,
µÃk=
=
.
¡àf(x)=
+4x(0<x¡Ü36,x¡ÊN*).
(2)ÓÉ(1)Öªf(x)=
+4x(0<x¡Ü36,x¡ÊN*),
¡àf(x)¡Ý2
=48(Ôª).
µ±ÇÒ½öµ±
=4x,¼´x=6ʱ,ÉÏʽµÈºÅ³ÉÁ¢.
¹ÊÿÅú¹ºÈë6ÕÅÊé×À,¿ÉÒÔʹ×ʽð¹»ÓÃ.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿