ÌâÄ¿ÄÚÈÝ

3£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÖУ¬F1£¬F2Ϊ×ó£¬ÓÒ½¹µã£¬ÒÔF1£¬F2Ϊֱ¾¶µÄÔ²ÓëÍÖÔ²ÔÚµÚÒ»¡¢ÈýÏóÏ޵Ľ»µã·Ö±ðΪA¡¢B£¬ÈôÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}+1}{2}$B£®$\frac{\sqrt{3}-1}{2}$C£®$\sqrt{3}$-1D£®$\frac{\sqrt{5}-1}{2}$

·ÖÎö ÓÉÌâÒâµÃÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬Ôò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®

½â´ð ½â£ºÈçͼËùʾ£¬¡ßÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬¡àÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®
¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬
¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÔò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®
¹ÊÑ¡C£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÀëÐÄÂÊ£¬½âÌâµÄ¹Ø¼üÊÇÒªºÏÀíÀûÓÃÍÖÔ²¡¢Ô²µÄÐÔÖÊ£¬Ö±ÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø