ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÖУ¬F1£¬F2Ϊ×ó£¬ÓÒ½¹µã£¬ÒÔF1£¬F2Ϊֱ¾¶µÄÔ²ÓëÍÖÔ²ÔÚµÚÒ»¡¢ÈýÏóÏ޵Ľ»µã·Ö±ðΪA¡¢B£¬ÈôÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©| A£® | $\frac{\sqrt{3}+1}{2}$ | B£® | $\frac{\sqrt{3}-1}{2}$ | C£® | $\sqrt{3}$-1 | D£® | $\frac{\sqrt{5}-1}{2}$ |
·ÖÎö ÓÉÌâÒâµÃÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬Ôò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®
½â´ð ½â£ºÈçͼËùʾ£¬¡ßÖ±ÏßABÓëÖ±Ïßx+$\sqrt{3}$y-7=0»¥Ïà´¹Ö±£¬¡àÖ±ÏßABµÄбÂÊΪ$\sqrt{3}$£¬¼´Çãб½ÇΪ$\frac{¦Ð}{3}$£®
¸ù¾Ý¶Ô³ÆÐÔ¿ÉÖª$¡ÏAO{F}_{2}=\frac{¦Ð}{3}$£¬$¡ÏA{F}_{2}{F}_{1}=\frac{¦Ð}{6}$
ÔÚRt¡÷AF1F2ÖУ¬$A{F}_{1}=\sqrt{3}c£¬A{F}_{2}=c$£¬
¸ù¾ÝÍÖÔ²µÄ¶¨ÒåÔò$\sqrt{3}c+c=2a$£¬⇒$\frac{c}{a}=\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$£®
¹ÊÑ¡C£®![]()
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄÀëÐÄÂÊ£¬½âÌâµÄ¹Ø¼üÊÇÒªºÏÀíÀûÓÃÍÖÔ²¡¢Ô²µÄÐÔÖÊ£¬Ö±ÏßµÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
19£®ÒÑÖª¼¯ºÏA={x|1£¼2x¡Ü16}£¬B={x|x£¼a}£¬ÈôA¡ÉB=A£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | a£¾4 | B£® | a¡Ý4 | C£® | a¡Ý0 | D£® | a£¾0 |
17£®ÎªÁ˵õ½º¯Êýy=cos2xµÄͼÏó£¬Ö»Òª°Ñº¯Êý$y=sin£¨2x-\frac{¦Ð}{3}£©$µÄͼÏóÉÏËùÓеĵ㣨¡¡¡¡£©
| A£® | ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{5¦Ð}{12}$¸öµ¥Î»³¤¶È | B£® | Ïò×óƽÐÐÒÆ¶¯$\frac{5¦Ð}{12}$¸öµ¥Î»³¤¶È | ||
| C£® | ÏòÓÒÆ½ÐÐÒÆ¶¯$\frac{5¦Ð}{6}$¸öµ¥Î»³¤¶È | D£® | Ïò×óƽÐÐÒÆ¶¯$\frac{5¦Ð}{6}$¸öµ¥Î»³¤¶È |
8£®
Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2AD£¬EΪ±ßABµÄÖе㣬½«¡÷ADEÑØÖ±ÏßDE·×ª³É¡÷A1DE£¨A1∉Æ½ÃæABCD£©£®ÈôM¡¢O·Ö±ðΪÏß¶ÎA1C¡¢DEµÄÖе㣬ÔòÔÚ¡÷ADE·×ª¹ý³ÌÖУ¬ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ÓëÆ½ÃæA1DE´¹Ö±µÄÖ±Ïß±ØÓëÖ±ÏßBM´¹Ö± | |
| B£® | ¹ýE×÷EG¡ÎBM£¬G¡ÊÆ½ÃæA1DC£¬Ôò¡ÏA1EGΪ¶¨Öµ | |
| C£® | Ò»¶¨´æÔÚij¸öλÖã¬Ê¹DE¡ÍMO | |
| D£® | ÈýÀâ×¶A1-ADEÍâ½ÓÇò°ë¾¶ÓëÀâADµÄ³¤Ö®±ÈΪ¶¨Öµ |
15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖª¡ÏB=30¡ã£¬¡÷ABCµÄÃæ»ýΪ$\frac{3}{2}$£¬ÇÒsinA+sinC=2sinB£¬ÔòbµÄֵΪ£¨¡¡¡¡£©
| A£® | 4+2$\sqrt{3}$ | B£® | 4-2$\sqrt{3}$ | C£® | $\sqrt{3}$-1 | D£® | $\sqrt{3}$+1 |
13£®2016Äê9ÔÂ30ÈÕÖܽÜÂס°µØ±í×îÇ¿¡±ÊÀ½çѲ»ØÑݳª»áÔÚɽÎ÷Ê¡ÌåÓýÖÐÐÄºìµÆÁýÌåÓý³¡¾ÙÐУ®Ä³¸ßУ4000ÃûÅ®Éú£¬6000ÃûÄÐÉúÖа´·Ö²ã³éÑù³éÈ¡ÁË50ÃûѧÉú½øÐÐÁËÎʾíµ÷²é£¬µ÷²é·¢ÏÖ¹Û¿´Ñݳª»áÓëδ¹Û¿´Ñݳª»áµÄÈËÊýÏàͬ£¬ÆäÖйۿ´Ñݳª»áµÄÅ®ÉúΪ15ÈË£®
£¨1£©¸ù¾Ýµ÷²é½á¹ûÍê³ÉÈçÏÂ2¡Á2ÁÐÁª±í£¬²¢Í¨¹ý¼ÆËãÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.005µÄǰÌáÏÂÈÏΪ¡°¹Û¿´Ñݳª»áÓëÐÔ±ðÓйء±£¿
£¨2£©´Ó¹Û¿´Ñݳª»áµÄ4ÃûÄÐÉúºÍ3ÃûÅ®ÉúÖгéÈ¡Á½ÈË£¬ÇóÇ¡ºÃ³éµ½Ò»ÃûÄÐÉúºÍÒ»ÃûÅ®ÉúµÄ¸ÅÂÊ£®
²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£®
£¨1£©¸ù¾Ýµ÷²é½á¹ûÍê³ÉÈçÏÂ2¡Á2ÁÐÁª±í£¬²¢Í¨¹ý¼ÆËãÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.005µÄǰÌáÏÂÈÏΪ¡°¹Û¿´Ñݳª»áÓëÐÔ±ðÓйء±£¿
£¨2£©´Ó¹Û¿´Ñݳª»áµÄ4ÃûÄÐÉúºÍ3ÃûÅ®ÉúÖгéÈ¡Á½ÈË£¬ÇóÇ¡ºÃ³éµ½Ò»ÃûÄÐÉúºÍÒ»ÃûÅ®ÉúµÄ¸ÅÂÊ£®
| ¹Û¿´ | δ¹Û¿´ | ºÏ¼Æ | |
| Å®Éú | |||
| ÄÐÉú | |||
| ºÏ¼Æ | 50 |
| P£¨K2¡Ýk0£© | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 5.024 | 6.635 | 7.879 | 10.828 |