题目内容

18.某空间几何体的三视图如图所示,则该几何体的表面积是$32+8\sqrt{5}$.

分析 由已知中的三视图可得:该几何体是一个以主视图为底面的三棱柱,代入棱柱表面积公式,可得答案.

解答 解:由已知中的三视图可得:该几何体是一个以主视图为底面的三棱柱,
底面面积为:$\frac{1}{2}$×2×4=4,
底面周长为:2+4+$\sqrt{{2}^{2}+{4}^{2}}$=6+2$\sqrt{5}$,
故棱柱的表面积S=2×4+4×(6+2$\sqrt{5}$)=$32+8\sqrt{5}$,
故答案为:$32+8\sqrt{5}$

点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网