题目内容
13.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点的渐近线的距离为2,且双曲线的一条渐近线与直线x-2y+3=0平行,则双曲线的方程为( )| A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{4}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{8}-\frac{y^2}{4}=1$ |
分析 利用焦点的渐近线的距离为2,双曲线的一条渐近线与直线x-2y+3=0平行,求出a,b,即可得到双曲线方程.
解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦点的渐近线的距离为2,可得b=2;
双曲线的一条渐近线与直线x-2y+3=0平行,可得$\frac{b}{a}=\frac{1}{2}$,解得a=4.
所求双曲线方程为:$\frac{x^2}{16}-\frac{y^2}{4}=1$.
故选:A.
点评 本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.
练习册系列答案
相关题目
4.函数y=sin(2x+$\frac{π}{3}$)的图象可以由函数y=sin2x的图象( )得到.
| A. | 向左平移$\frac{π}{3}$个单位长度 | B. | 向右平移$\frac{π}{3}$个单位长度 | ||
| C. | 向左平移$\frac{π}{6}$个单位长度 | D. | 向右平移$\frac{π}{6}$个单位长度 |