题目内容
已知向量
=(an+1,1),
=(1,-an),
•
=2,设数列{an}的前n项和为Sn,且S4、S6、S9成等比数列.
(Ⅰ)求an与Sn;
(Ⅱ)若bn=
+3n,求数列{bn}的前n项和Tn.
| a |
| b |
| a |
| b |
(Ⅰ)求an与Sn;
(Ⅱ)若bn=
| 1 |
| Sn+n |
考点:数列的求和,等差数列的性质,平面向量数量积的运算
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件得an+1-an=2,(6a1+30)2=(4a1+12)(9a1+72),由此能求出an=2n-1,Sn=n2.
(Ⅱ)bn=
+3n=(
-
)+3n,由此利用分组求和法和裂项求和法能求出数列{bn}的前n项和Tn.
(Ⅱ)bn=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:
解:(Ⅰ)∵向量
=(an+1,1),
=(1,-an),
•
=2,
an+1-an=2,…(1分)
∴数列{an}为等差数列,
Sn=na1+
×2=na1+n2-n,
S4=4a1+12,S6=6a1+30,S9=9a1+72
∴(6a1+30)2=(4a1+12)(9a1+72),
解得a1=1,
所以an=2n-1,Sn=n2.
(Ⅱ)bn=
+3n=(
-
)+3n,
∴Tn=1-
+
-
+…+
-
+
=1-
+
=
•3n+1-
-
.
| a |
| b |
| a |
| b |
an+1-an=2,…(1分)
∴数列{an}为等差数列,
Sn=na1+
| n(n-1) |
| 2 |
S4=4a1+12,S6=6a1+30,S9=9a1+72
∴(6a1+30)2=(4a1+12)(9a1+72),
解得a1=1,
所以an=2n-1,Sn=n2.
(Ⅱ)bn=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 3(1-3n) |
| 1-3 |
=1-
| 1 |
| n+1 |
| 3(3n-1) |
| 2 |
=
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| 2 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意分组求和法和裂项求和法的合理运用.
练习册系列答案
相关题目