题目内容

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求三棱锥A-BCF的体积.
考点:平面与平面垂直的判定,棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(1)取CE的中点G,连结FG、BG.由已知条件推导出四边形GFAB为平行四边形,由此能证明AF∥平面BCE.
(2)由等边三角形性质得AF⊥CD,由线面垂直得DE⊥AF,从而AF⊥平面CDE,由平行线性质得BG⊥平面CDE,由此能证明平面BCE⊥平面CDE.
(3)由已知条件利用等积法能求出三棱锥A-BCF的体积.
解答: (本小题满分14分)
(1)证明:取CE的中点G,连结FG、BG.  …(1分)
∵F为CD的中点,
∴GF∥DE且GF=
1
2
DE

∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.   …(2分)
又AB=
1
2
DE
,∴GF=AB. …(3分)
∴四边形GFAB为平行四边形,
则AF∥BG.…(4分)
∵AF不包含于平面BCE,BG?平面BCE,
∴AF∥平面BCE. …(5分)
(2)证明:∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.…(6分)
∵DE⊥平面ACD,AF?平面ACD,∴DE⊥AF. …(7分)
又CD∩DE=D,故AF⊥平面CDE.…(8分)
∵BG∥AF,∴BG⊥平面CDE.
∵BG?平面BCE,∴平面BCE⊥平面CDE. …(10分)
(3)解:∵AB⊥平面ACD,∴AB是三棱锥B-ACF的高.…(11分)
∵△ACD为等边三角形,且AD=DE=2AB=2,∴AB=1.…(12分)
VA-BCF=VACF=
1
3
×S△ACF×AB
 …(13分)
=
1
3
×
1
2
×S△ACD×AB

=
1
3
×
1
2
×
3
4
×22×1

=
3
6
.…(14分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网