题目内容
(Ⅰ)若点P(x,y)在曲线|x|+|y|=1上(xy≠0),求证:
+
≥1.
(Ⅱ)已知CD为△ABC外接圆的切线,AB的延长线交CD于点D,点E,F分别在弦AB与弦AC上,且BC•AE=DC•AF,B,E,F,C四点共圆,证明:△ABC是直角三角形.
| x2 |
| |y| |
| y2 |
| |x| |
(Ⅱ)已知CD为△ABC外接圆的切线,AB的延长线交CD于点D,点E,F分别在弦AB与弦AC上,且BC•AE=DC•AF,B,E,F,C四点共圆,证明:△ABC是直角三角形.
考点:圆的切线方程
专题:直线与圆
分析:(Ⅰ)由已知条件得
+
=(
+
)(|x|+|y|),由此利用均值不等式能证明
+
≥1.
(Ⅱ)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明△ABC是直角三角形.
| x2 |
| |y| |
| y2 |
| |x| |
| x2 |
| |y| |
| y2 |
| |x| |
| x2 |
| |y| |
| y2 |
| |x| |
(Ⅱ)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明△ABC是直角三角形.
解答:
(Ⅰ)证明:∵点P(x,y)在曲线|x|+|y|=1上(xy≠0),
|x|>0,|y|>0,
∴
+
=(
+
)(|x|+|y|)
=
+y2+x2+
≥x2+y2+2
=x2+y2+2|x||y|
=(|x|+|y|)2
=1.
∴
+
≥1.
(Ⅱ)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,
∵BC•AE=DC•AF,∴
=
.
∴△CDB∽△AEF,∴∠CBD=∠AFE.
∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.
∴∠CBA=90°,∴△ABC是直角三角形.
|x|>0,|y|>0,
∴
| x2 |
| |y| |
| y2 |
| |x| |
| x2 |
| |y| |
| y2 |
| |x| |
=
| x3 |
| |y| |
| y3 |
| |x| |
≥x2+y2+2
|
=x2+y2+2|x||y|
=(|x|+|y|)2
=1.
∴
| x2 |
| |y| |
| y2 |
| |x| |
(Ⅱ)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,
∵BC•AE=DC•AF,∴
| BC |
| FA |
| DC |
| EA |
∴△CDB∽△AEF,∴∠CBD=∠AFE.
∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.
∴∠CBA=90°,∴△ABC是直角三角形.
点评:本题考查不等式的证明,考查直角三角形的证明,解题时要认真审题,注意均值不等式和圆的性质的灵活运用.
练习册系列答案
相关题目