题目内容
有一道数学难题,在半小时内甲能解决的概率是,乙能解决的概率为,两人试图独立地在半小时解决,则难题半小时内被解决的概率为________.
已知等差数列的公差,且,当且仅当n=10时,数列的前n项和Sn取得最小值,则首项a1的取值范围是____________.
已知函数f(x)=lnx-ax2+(2-a)x.
(1)讨论f(x)的单调性;
(2)设a>0,证明:当0<x<时,f(+x)>f(-x);
(3)若函数y=f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.
已知,则等于( )
A.4 B.-2 C.0 D. 2
某中学生心理咨询中心服务电话接通率为,某班3名同学商定明天分别就同一问题询问该服务中心,且每人只拨打一次,
求(1)他们中成功咨询的人数为X的分布列及期望;
(2)至少一人拨通电话的概率.
抛掷两枚骰子,当至少有一枚5点或6点出现时,就说试验成功,则在30次独立重复试验中成功的次数X的数学期望是( )
A. B. C.10 D.20
在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率为( )
A. B. C. D.
设变量满足约束条件,则目标函数的最大值为( )
A.3 B.4 C.6 D.12
已知函数,若存在,,当时,,则的取值范围是 .