题目内容
4.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程$\widehaty=3-5x$,变量x增加一个单位时,y平均增加5个单位
③线性回归方程$\widehaty=\widehatbx+\widehata$必过$(\overline x,\overline y)$;
④在一个2×2列联表中,由计算得K2=13.079,则有99.9%的把握确认这两个变量间有关系.
其中错误的个数是( )
本题可以参考独立性检验临界值表
| P(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 根据方差是表示一组数据波动大小的量,判断①正确;
根据回归方程的系数判断x与y是负相关,得②错误;
根据线性回归方程必过样本中心点,判断③正确;
根据观测值与临界值的关系,判断④正确.
解答 解:对于①,根据方差是表示一组数据波动大小的量,
将一组数据中的每个数据都加上或减去同一个常数后,方差不变,①正确;
对于②,设有一个回归方程$\widehaty=3-5x$,
变量x增加一个单位时,y平均减少5个单位,②错误
对于③,线性回归方程$\widehaty=\widehatbx+\widehata$必过样本中心点$(\overline x,\overline y)$,③正确;
对于④,在2×2列联表中,计算得K2=13.079>10.828,
对照临界值表知,有99.9%的把握确认这两个变量间有关系,④正确.
综上,其中错误序号是②,共1个.
故选:B.
点评 本题考查了线性回归方程与独立性检验的应用问题,是综合题.
练习册系列答案
相关题目
15.已知函数f(x)=loga(x+4)-1(a>0且a≠1)的图象恒过定点A,若直线$\frac{x}{m}+\frac{y}{n}=-2$(m,n>0)也经过点A,则3m+n的最小值为( )
| A. | 16 | B. | 8 | C. | 12 | D. | 14 |
12.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到数据如下:
由表中的数据求得y关于x的线性回归方程为$\widehaty$=-0.7x+a,则a等于( )
| x | 1 | 2 | 3 | 4 |
| y | 4.5 | 4 | 3 | 2.5 |
| A. | 10.5 | B. | 5.25 | C. | 5.2 | D. | 5.15 |
19.某班5名学生的数学和物理成绩如下表:
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A | B | C | D | E | |
| 数学成绩(x) | 88 | 76 | 73 | 66 | 63 |
| 物理成绩(y) | 78 | 65 | 71 | 64 | 61 |
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
16.现有编号为A,B,C,D的四本书,将这4本书平均分给甲、乙两位同学,则A,B两本书不被同一位同学分到的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
13.设集合A={x|-2≤x≤4},B={x|x2-3x>0},则A∩B=( )
| A. | {x|-2≤x<0或3<x≤4} | B. | {x|-2≤x≤0或3≤x≤4} | C. | {x|-2<x≤4} | D. | {x|0<x<3} |
14.为促进义务教育的均衡发展,各地实行免试就近入学政策,某地区随机调查了50人,他们年龄的频数分布及赞同“就近入学”人数如表:
(1)在该样本中随机抽取3人,求至少2人支持“就近入学”的概率.
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.
| 年龄 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
| 频数 | 5 | 10 | 15 | 10 | 5 | 5 |
| 赞同 | 4 | 5 | 12 | 8 | 2 | 1 |
(2)若对年龄在[5,15),[35,45)的被调查人中各随机选取2两人进行调查,记选中的4人支持“就近入学”人数为X,求随机变量X的分布列及数学期望.