题目内容

如图,在平面直角坐标系中,直线y=kx+b(k≠0)分别交双曲线y=
m
x
(m≠0)
于A、B两点,交x轴于点D,在x轴上有一点C(3,0),且AD=5,CD=4,sin∠ADC=
4
5
,B(-3,n).
(1)求该双曲线y=
m
x
与直线AB的解析式;
(2)连接BC,求△ABC的面积.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线的定义、性质与方程
分析:(1)由于倾斜角∠ADC为锐角,已知sin∠ADC=
4
5
,利用三角函数基本关系式可得斜率k.利用CD=4,C(3,0),可得D(-1,0),代入直线AB可得b.进而得到直线AB的方程.把B(-3,n)代入直线AB的方程可得n,可得B并代入双曲线y=
m
x
可得m即可.
(2)设A(x,
8
x
)
(x>0),利用两点间的距离公式和AD=5,可得x.再利用S△ABC=S△ADC+S△BCD=
1
2
|DC|•yA
+
1
2
|DC|•(-yB)
即可得出.
解答: 解:(1)∵sin∠ADC=
4
5
,又∠ADC为锐角,
∴cos∠ADC=
1-cos2∠ADC
=
3
5

∴tan∠ADC=
sin∠ADC
cos∠ADC
=
4
3

∴斜率k=
4
3

∴CD=4,C(3,0),∴D(-1,0),
代入直线AB:0=-k+b,∴b=k=
4
3

∴直线AB的方程为:y=
4
3
x+
4
3

把B(-3,n)代入上式可得:n=-3×
4
3
+
4
3
=-
8
3

∴B(-3,-
8
3
)

把B的坐标代入双曲线y=
m
x
可得:m=-3×(-
8
3
)
=8.
∴双曲线的方程为:y=
8
x

综上可得:该双曲线y=
8
x
,直线AB的解析式为y=
4
3
x+
4
3

(2)设A(x,
8
x
)
(x>0),
∵AD=5,∴
(x+1)2+(
8
x
)2
=5
,解得x=2.
∴A(2,4).∴S△ABC=S△ADC+S△BCD=
1
2
|DC|•yA
+
1
2
|DC|•(-yB)

=
1
2
×4×(4+
8
3
)
=
40
3
点评:本题考查了三角函数的基本关系式、斜率与倾斜角的关系、直线与双曲线相交问题、两点间的距离公式、三角形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网