题目内容
8.已知实数x、y满足$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤6}\\{x≥0,y≥0}\end{array}\right.$,则z=2x+y的最大值是10.分析 画出不等式组表示的平面区域,根据图形得出最优解,由此求出目标函数的最大值.
解答 解:画出不等式组$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤6}\\{x≥0,y≥0}\end{array}\right.$表示的平面区域,
如图所示;![]()
根据图形知,
由$\left\{\begin{array}{l}{x-y=2}\\{x+y=6}\end{array}\right.$解得A(4,2);
目标函数z=2x+y过点A时,
z取得最大值为zmax=2×4+2=10.
故答案为:10.
点评 本题考查了线性规划的应用问题,也考查了数形结合的应用问题,是基础题.
练习册系列答案
相关题目
19.在平面直角坐标系xOy中,以(-2,0)为圆心且与直线mx+2y-2m-6=0(m∈R)相切的所有圆中,面积最大的圆的标准方程是( )
| A. | (x+2)2+y2=16 | B. | (x+2)2+y2=20 | C. | (x+2)2+y2=25 | D. | (x+2)2+y2=36 |
3.已知实数a1,a2,b1,b2,b3满足数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则$\frac{{b}_{2}}{{a}_{1}+{a}_{2}}$的值为( )
| A. | ±$\frac{3}{10}$ | B. | $\frac{3}{10}$ | C. | -$\frac{3}{10}$ | D. | 1 |
5.若直线y=kx+2与曲线$x=\sqrt{{y^2}+6}$交于不同的两点,那么k的取值范围是( )
| A. | ($-\frac{{\sqrt{15}}}{3},\frac{{\sqrt{15}}}{3}$) | B. | ($0,\frac{{\sqrt{15}}}{3}$) | C. | ($-\frac{{\sqrt{15}}}{3},0$) | D. | ($-\frac{{\sqrt{15}}}{3},-1$) |