题目内容

己知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(
3
2
)等于(  )
A、-
3
B、
3
C、-1
D、1
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由图象可得A=2,T=2,继而可得ω,由π•
1
3
+φ=2kπ+
π
2
(k∈Z)可求得φ,于是可得f(x)=2sin(πx+
π
6
),从而可求f(
3
2
)的值.
解答: 解:由函数的图象可得A=2,
T=
ω
=4(
5
6
-
1
3
)=2,解得ω=π;
∴f(x)=2sin(πx+φ),
又π•
1
3
+φ=2kπ+
π
2
(k∈Z),
∴φ=2kπ+
π
6
(k∈Z),而|φ|<
π
2

∴φ=
π
6

∴f(x)=2sin(πx+
π
6
),
∴f(
3
2
)=2sin(
2
+
π
6
)=-2cos
π
6
=-
3

故选:A.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得f(x)=2sin(πx+
π
6
)是关键,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网