题目内容

设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为(  )
A、0B、2C、4D、1
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:首先由f(x)=ax3-3x+1,可得f′(x)=3ax2-3,(1)当a≤0时,3ax2-3<0,函数f(x)是减函数,f(x)min=f(1)=a-2≥0,解得a≥2,与已知矛盾;(2)当a>0时,令f′(x)=0,可得x=±
a
a
,根据对于任意x∈[-1,1],都有f(x)≥0成立,分类讨论,求出a的取值范围即可.
解答: 解:由f(x)=ax3-3x+1,
可得f′(x)=3ax2-3,
(1)当a≤0时,3ax2-3<0,
函数f(x)是减函数,
f(x)min=f(1)=a-2≥0,
解得a≥2,与已知矛盾;
(2)当a>0时,令f′(x)=0,可得x=±
a
a

①当x<-
a
a
时,f′(x)>0,f(x)为递增函数,
②当-
a
a
<x<
a
a
时,f′(x)<0,f(x)为递减函数,
③当x>
a
a
时,f(x)为递增函数;
所以f(
a
a
)≥0,f(-1)≥0,且f(1)≥0,
由f(
a
a
)≥0,解得a≥4,
由f(-1)≥0,解得a≤4,
由f(1)≥0解得2≤a≤4,
综上,可得a=4.
故选:C.
点评:此题主要考查了利用导数求闭区间上函数的最值问题,考查了分类讨论思想的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网