题目内容
15.(1)求证:GE∥平面AA1B1B;
(2)平面AFB1分此棱柱为两部分,求这两部分体积的比.
分析 (1)连接AB1,在平行四边形BCC1B1中,由△BEF∽△C1EB1,可得$\frac{{B}_{1}E}{EF}=\frac{{B}_{1}{C}_{1}}{BF}=2$,再由G为ABC的重心,得到$\frac{AG}{GF}=2$,说明EG∥AB1,然后利用线面平行的判定可得GE∥平面AA1B1B;
(2)设底面ABC的面积为2S,三棱柱ABC-A1B1C1的高为h,求出棱锥体积,由棱柱体积与棱锥体积作差得到多面体ACF-A1B1C1的体积,则答案可求.
解答 (1)证明:如图,连接AB1,在平行四边形BCC1B1中,![]()
∵B1F∩BC1=E,可知△BEF∽△C1EB1,
∵F为BC的中点,
∴$\frac{{B}_{1}E}{EF}=\frac{{B}_{1}{C}_{1}}{BF}=2$,
又G为ABC的重心,
∴$\frac{AG}{GF}=2$,则$\frac{{B}_{1}E}{EF}=\frac{AG}{GF}=2$,
∴EG∥AB1,
∵AB1?平面AA1B1B,EG?平面AA1B1B,
∴GE∥平面AA1B1B;
(2)解:设底面ABC的面积为2S,三棱柱ABC-A1B1C1的高为h,
则${V}_{ABC-{A}_{1}{B}_{1}{C}_{1}}=2Sh$,${V}_{{B}_{1}-AFB}=\frac{1}{3}Sh$,
∴${V}_{ACF-{A}_{1}{B}_{1}{C}_{1}}=2Sh-\frac{1}{3}Sh=\frac{5}{3}Sh$.
∴${V}_{ACF-{A}_{1}{B}_{1}{C}_{1}}$:${V}_{{B}_{1}-AFB}$=5:1.
点评 本题考查直线与平面平行的判定,考查了棱锥体积的求法,考查了空间想象能力和思维能力,是中档题.
| A. | x-y-5=0 | B. | x+y-5=0 | C. | x-y+5=0 | D. | x+y+5=0 |
| A. | a>b>c | B. | b>c>a | C. | b>a>c | D. | a>c>b |
| A. | 9•10n-1 | B. | $\left\{{\begin{array}{l}{11}\\{9•{{10}^{n-1}}}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$ | ||
| C. | 10n+1 | D. | $\left\{{\begin{array}{l}9\\{{{10}^n}+1}\end{array}\begin{array}{l}{,n=1}\\{,n≥2}\end{array}}\right.$ |