题目内容

3.在一次购物抽奖活动中,假设某l0张奖券中有一等奖券1张,可获得价值100元的奖品,有二等奖券3张,每张可获得价值50元的奖品,其余6张没有奖,某顾客从此l0张奖券中任抽2张,求
(I)该顾客中奖的概率;
(Ⅱ)该顾客获得奖品总价值X的概率分布列和数学期望.

分析 (Ⅰ)由题意求出该顾客没有中奖的概率,由此利用对立事件概率计算公式能求出该顾客中奖的概率.
(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),分别求出相应的概率,由此能求出X的分布列和数学期望.

解答 解:(Ⅰ)由题意得该顾客没有中奖的概率为$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
∴该顾客中奖的概率为:P=1-$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{2}{3}$,
∴该顾客中奖的概率为$\frac{2}{3}$.
(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),
∴P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=50)=$\frac{{C}_{3}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{1}{5}$,
P(X=100)=$\frac{{C}_{3}^{2}+{C}_{1}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{1}{5}$,
P(X=150)=$\frac{{C}_{3}^{1}{C}_{1}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
∴X的分布列为:

 X 0 50 100 150
 P $\frac{1}{3}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{1}{15}$
∴X的数学期望为EX=$0×\frac{1}{3}+50×\frac{2}{5}+100×\frac{1}{5}+150×\frac{1}{15}$=50.

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网