题目内容
3.在一次购物抽奖活动中,假设某l0张奖券中有一等奖券1张,可获得价值100元的奖品,有二等奖券3张,每张可获得价值50元的奖品,其余6张没有奖,某顾客从此l0张奖券中任抽2张,求(I)该顾客中奖的概率;
(Ⅱ)该顾客获得奖品总价值X的概率分布列和数学期望.
分析 (Ⅰ)由题意求出该顾客没有中奖的概率,由此利用对立事件概率计算公式能求出该顾客中奖的概率.
(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),分别求出相应的概率,由此能求出X的分布列和数学期望.
解答 解:(Ⅰ)由题意得该顾客没有中奖的概率为$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
∴该顾客中奖的概率为:P=1-$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{2}{3}$,
∴该顾客中奖的概率为$\frac{2}{3}$.
(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),
∴P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=50)=$\frac{{C}_{3}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{1}{5}$,
P(X=100)=$\frac{{C}_{3}^{2}+{C}_{1}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{1}{5}$,
P(X=150)=$\frac{{C}_{3}^{1}{C}_{1}^{1}}{{C}_{10}^{2}}$=$\frac{1}{15}$,
∴X的分布列为:
| X | 0 | 50 | 100 | 150 |
| P | $\frac{1}{3}$ | $\frac{2}{5}$ | $\frac{1}{5}$ | $\frac{1}{15}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
练习册系列答案
相关题目
11.在等比数列{an}中,若a1,a2,…,a8都是正数,且公比q≠1,则( )
| A. | a1+a8>a4+a5 | B. | a1+a8<a4+a5 | ||
| C. | a1+a8=a4+a5 | D. | a1+a8与a4+a5的大小关系不定 |
8.若复数z满足z(1+i)=2-2i(i为虚数单位),则|z|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
13.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.

该表由若干行数字组成,第一行共有2016个数字,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )
该表由若干行数字组成,第一行共有2016个数字,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为( )
| A. | 2016×22015 | B. | 2016×22014 | C. | 2017×22015 | D. | 2017×22014 |