题目内容

10.在区间[-1,5]上随机地取一个实数a,则方程x2-2ax+4a-3=0有两个正根的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{8}$D.$\frac{1}{3}$

分析 根据根与系数之间的关系,求出a的取值范围,结合几何概型的概率公式进行计算即可.

解答 解:若方程x2-2ax+4a-3=0有两个正根,
则满足$\left\{\begin{array}{l}{△=4{a}^{2}-4(4a-3)=4({a}^{2}-4a+3)≥0}\\{4a-3>0}\\{2a>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a≥3或a≤1}\\{a>\frac{3}{4}}\\{a>0}\end{array}\right.$,得$\frac{3}{4}$<a≤1或a≥3,
∵-1≤a≤5
则对应的概率P=$\frac{1-\frac{3}{4}}{5-(-1)}$+$\frac{5-3}{5-(-1)}$=$\frac{1}{24}$+$\frac{1}{3}$=$\frac{3}{8}$,
故选:C

点评 本题主要考查几何概型的概率的计算,根据根与系数之间的关系求出a的取值范围是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网