题目内容
15.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
回归直线的斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$.
分析 (1)计算$\overline{x}$、$\overline{y}$,根据回归直线方程过样本中心点求出a的值,写出回归直线方程;
(2)设工厂获得的利润为L元,利用回归直线方程写出L的利润函数,求出最大值即可.
解答 解:(1)计算$\overline{x}$=$\frac{1}{6}$×(8+8.2+8.4+8.6+8.8+9)=8.5,
$\overline{y}$=$\frac{1}{6}$×(90+84+83+80+75+68)=80,
且回归直线方程$\stackrel{∧}{y}$=bx+a中b=-20,
∴a=$\overline{y}$-b$\overline{x}$=80-(-20)×8.5=250,
∴回归直线方程为$\stackrel{∧}{y}$=-20x+250;
(2)设工厂获得的利润为L元,且回归直线方程为$\stackrel{∧}{y}$=-20x+250;
∴L=x(-20x+250)-4(-20x+250)=-20x2+330x-1000=-20${(x-\frac{33}{4})}^{2}$+361.25,
当且仅当x=$\frac{33}{4}$=8.25时,L取得最大值,
即当单价定为8.25元时,工厂获得利润最大.
点评 本题考查了线性回归方程的应用问题,是基础题.
练习册系列答案
相关题目
3.若$tanθ=\frac{1}{3}$,则sin2θ=( )
| A. | $-\frac{3}{5}$ | B. | $-\frac{1}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
10.在区间[-1,5]上随机地取一个实数a,则方程x2-2ax+4a-3=0有两个正根的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{8}$ | D. | $\frac{1}{3}$ |