题目内容
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[e,2e]上是减函数,令a=
,b=
,c=
,则f(a),f(b),f(c) 的大小关系(用不等号连接)为( )
| ln2 |
| 2 |
| ln3 |
| 3 |
| ln5 |
| 5 |
| A、f(b)>f(a)>f(c) |
| B、f(b)>f(c)>f(a) |
| C、f(a)>f(b)>f(c) |
| D、f(a)>f(c)>f(b) |
考点:函数单调性的性质
专题:函数的性质及应用
分析:由f(x)是R上的奇函数及f(x+2e)=-f(x),可得f(x+2e)=f(-x),从而可知f(x)关于x=e对称,由f(x)在[e,2e]上的单调性可得f(x)在[0,e]上的单调性,由a,b,c的大小关系,进而得到f(a)、f(b)、f(c)的大小关系.
解答:
解:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),
∴f(x+2e)=f(-x),
∴函数f(x)关于直线x=e对称,
∵f(x)在区间[e,2e]上为减函数,
∴f(x)在区间[0,e]上为增函数,
∵a=
,b=
,c=
,
通过
单调性判断,易知0<c<a<b<e
∴f(c)<f(a)<f(b),
故选:A.
∴f(x+2e)=f(-x),
∴函数f(x)关于直线x=e对称,
∵f(x)在区间[e,2e]上为减函数,
∴f(x)在区间[0,e]上为增函数,
∵a=
| ln2 |
| 2 |
| ln3 |
| 3 |
| ln5 |
| 5 |
通过
| lnx |
| x |
∴f(c)<f(a)<f(b),
故选:A.
点评:本题考查函数的奇偶性、单调性及其应用,考查学生灵活运用知识分析解决问题的能力,属中档题.
练习册系列答案
相关题目
已知数列{an}的前n项和为Sn=1-5+9-13+17-21+…+(-1)n+1(4n-3),则S15+S22-S31的值是( )
| A、-76 | B、76 | C、46 | D、13 |
若函数f(x)=a•g(x)+b•h(x)+2(a≠0,b≠0)在(0,+∞)上有最大值5,其中g(x)、h(x)都是定义在R上的奇函数.则f(x)在(-∞,0)上有( )
| A、最小值-5 |
| B、最大值-5 |
| C、最小值-1 |
| D、最大值-3 |
下列判断正确的是( )
| A、p:“?x0∈R,2x0≤0”则有?p:不存在x0∈R,2x0>0 | ||||
| B、命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | ||||
C、?x∈(0,+∞),(
| ||||
| D、设x是实数,则“x>1”是“|x|>1”的充分而不必要条件 |
下列函数中,在其定义域内为减函数的是( )
| A、y=-x3 | ||
B、y=x
| ||
| C、y=x2 | ||
| D、y=log2x |
在平面正六边形ABCDEF中,任选3个点,则3点构成的任意两条线段都成60°角概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
下列函数为奇函数,且在(-∞,0)上单调递减的函数是( )
| A、f(x)=x-1 |
| B、f(x)=2x |
| C、f(x)=|x| |
| D、f(x)=x3 |