题目内容
19.(Ⅰ)求AB的长;
(Ⅱ)求sin∠CAD的值.
分析 (Ⅰ)设AB=x.由△ABC是等边三角形,可求∠ABC的值,利用三角形面积公式可得x2+2x-24=0,进而解得AB的值.
(Ⅱ)由余弦定理可求AD的值,进而利用正弦定理可求sin∠CAD的值.
解答 (本小题满分13分)
解:(Ⅰ)设AB=x.
因为△ABC是等边三角形,
所以$∠ABC=\frac{π}{3}$.
因为${S_{△ABD}}=\frac{1}{2}AB•BDsin∠ABC$,
所以$6\sqrt{3}=\frac{1}{2}x(x+2)×\frac{{\sqrt{3}}}{2}$.
即x2+2x-24=0.
所以x=4,x=-6(舍).
所以AB=4.…(6分)
(Ⅱ)因为AD2=AB2+BD2-2AB•BDcos∠ABC,
所以$A{D^2}=16+36-2×4×6×\frac{1}{2}=28$.
所以$AD=2\sqrt{7}$.
在△ACD中,
因为$\frac{CD}{sin∠CAD}=\frac{AD}{sin∠ACD}$,
所以$sin∠CAD=\frac{CD•sin∠ACD}{AD}=\frac{{2×\frac{{\sqrt{3}}}{2}}}{{2\sqrt{7}}}=\frac{{\sqrt{21}}}{14}$.…(13分)
点评 本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于基础题.
练习册系列答案
相关题目
9.函数y=cos 2x+2sin x的最大值为( )
| A. | $\frac{3}{4}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
10.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别是F1,F2,M是双曲线上的一点,且|MF1|=$\sqrt{3}$,|MF2|=1,∠MF1F2=30°,则该双曲线的离心率是( )
| A. | $\sqrt{3}-1$ | B. | $\sqrt{3}+1$ | C. | $\frac{{\sqrt{3}+1}}{2}$ | D. | $\sqrt{3}+1$或$\frac{{\sqrt{3}+1}}{2}$ |
7.函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,$f(x)={x^{\frac{1}{2}}}$,若函数g(x)=f(x)-x-b恰有一个零点,则实数b的取值集合是( )
| A. | $(2k-\frac{1}{4},2k+\frac{1}{4}),k∈Z$ | B. | $(2k+\frac{1}{2},2k+\frac{5}{2}),k∈Z$ | ||
| C. | $(4k-\frac{1}{4},4k+\frac{1}{4}),k∈Z$ | D. | $(4k+\frac{1}{4},4k+\frac{15}{4}),k∈Z$ |
4.圆x2+y2=1与圆(x-2)2+(y-2)2=5的位置关系为( )
| A. | 内切 | B. | 相交 | C. | 外切 | D. | 相离 |
1.已知{an}是等比数列,且 ${a_5}=\frac{1}{2},4{a_3}+{a_7}=2$,则a9=( )
| A. | 2 | B. | ±2 | C. | 8 | D. | $\frac{1}{8}$ |