ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÔ²ÐÄÔÚxÖáÉϵÄÔ²CÓëÖ±Ïßl£º4x+3y-6=0ÇÐÓÚµãM£¨$\frac{3}{5}$£¬$\frac{6}{5}$£©£¨1£©ÇóÖ±Ïß12x-5y-1=0±»Ô²C½ØµÃµÄÏÒ³¤
£¨2£©ÒÑÖªN£¨2£¬1£©£¬¾¹ýԵ㣬ÇÒбÂÊΪÕýÊýµÄÖ±ÏßLÓëÔ²C½»ÓÚP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©Á½µã
£¨i£©ÇóÖ¤£º$\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}$Ϊ¶¨Öµ
£¨ii£©Èô|PN|2+|QN|2=24£¬ÇóÖ±ÏßLµÄ·½³Ì£®
·ÖÎö £¨1£©ÏÈÇó³öÔ²µÄ·½³Ì£¬ÔÙÇóÖ±Ïß12x-5y-1=0±»Ô²C½ØµÃµÄÏÒ³¤
£¨2£©£¨i£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¨k£¾0£©£¬ÓëÔ²µÄ·½³ÌÁªÁ¢£¬¿ÉµÃ£¨1+k2£©x2+2x-3=0£¬ÀûÓÃΤ´ï¶¨Àí¼´¿ÉÖ¤Ã÷£»
£¨ii£©Èô|PN|2+|QN|2=24£¬ÀûÓÃΤ´ï¶¨Àí£¬Çó³öÖ±ÏßµÄбÂÊ£¬¼´¿ÉÇóÖ±ÏßLµÄ·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬C£¨a£¬0£©£¬z\ÔòkCM=$\frac{\frac{6}{5}}{\frac{3}{5}-a}$£¬
¡à$\frac{\frac{6}{5}}{\frac{3}{5}-a}$•£¨-$\frac{4}{3}$£©=-1£¬¡àa=-1£¬
¡àC£¨-1£¬0£©£¬|CM|=2£¬¼´r=2£¬
¡àÔ²CµÄ±ê×¼·½³ÌΪ£¨x+1£©2+y2=4£®
Ô²Ðĵ½Ö±Ïß12x-5y-1=0µÄ¾àÀëΪ1£¬¡àËùÇóÏÒ³¤Îª2$\sqrt{4-1}$=2$\sqrt{3}$£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx£¨k£¾0£©£¬ÓëÔ²µÄ·½³ÌÁªÁ¢£¬¿ÉµÃ£¨1+k2£©x2+2x-3=0£¬
¡àx1+x2=-$\frac{2}{1+{k}^{2}}$£¬x1x2=-$\frac{3}{1+{k}^{2}}$£®
£¨i£©$\frac{1}{{x}_{1}}+\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$=$\frac{2}{3}$Ϊ¶¨Öµ£»
£¨ii£©|PN|2+|QN|2=$£¨{x}_{1}-2£©^{2}+£¨{y}_{1}-1£©^{2}$+$£¨{x}_{2}-2£©^{2}+£¨{y}_{2}-1£©^{2}$
=$£¨1+{k}^{2}£©£¨{x}_{1}+{x}_{2}£©^{2}-2£¨1+{k}^{2}£©{x}_{1}{x}_{2}$-£¨4+2k£©£¨x1+x2£©+10=$\frac{12+4k}{1+{k}^{2}}$+16=24£¬
¡àk=1»ò-$\frac{1}{2}$£¬
¾¼ìÑék=1Âú×ãÌâÒ⣬
¡àÖ±ÏßLµÄ·½³ÌΪy=x£®
µãÆÀ ±¾Ì⿼²éÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| A£® | Èç¹ûÆ½Ãæ¦Á¡ÍÆ½Ãæ ¦Ã£¬Æ½Ãæ¦Â¡ÍÆ½Ãæ ¦Ã£¬¦Á¡É¦Â=l£¬ÄÇôl¡Í¦Ã | |
| B£® | Èç¹ûÆ½Ãæ¦Á¡ÍÆ½Ãæ ¦Â£¬ÄÇÃ´Æ½Ãæ¦ÁÄÚÒ»¶¨´æÔÚÖ±Ï߯½ÐÐÓÚÆ½Ãæ¦Â | |
| C£® | Èç¹ûÆ½Ãæ¦Á²»´¹Ö±ÓÚÆ½Ãæ¦Â£¬ÄÇÃ´Æ½Ãæ¦ÁÄÚÒ»¶¨²»´æÔÚÖ±Ïß´¹Ö±ÓÚÆ½Ãæ¦Â | |
| D£® | Èç¹ûÆ½Ãæ¦Á¡ÍÆ½Ãæ ¦Â£¬¹ý¦ÁÄÚÈÎÒâÒ»µã×÷½»ÏߵĴ¹Ïߣ¬ÄÇô´Ë´¹Ï߱ش¹Ö±Óڦ |
| A£® | £¨1£¬+¡Þ£© | B£® | £¨-¡Þ£¬-1£© | C£® | £¨-1£¬1£© | D£® | £¨-¡Þ£¬1£©¡È£¨1£¬+¡Þ£© |