题目内容
1.已知{an}是等比数列,且 ${a_5}=\frac{1}{2},4{a_3}+{a_7}=2$,则a9=( )| A. | 2 | B. | ±2 | C. | 8 | D. | $\frac{1}{8}$ |
分析 由已知列式求得a3,进一步求得公比,再由等比数列的通项公式求得a9.
解答 解:在等比数列{an}中,由${a}_{5}=\frac{1}{2}$,
得${a}_{3}{a}_{7}={{a}_{5}}^{2}=\frac{1}{4}$,又4a3+a7=2,
联立解得:${a}_{3}=\frac{1}{4}$.
则q=$\frac{{a}_{5}}{{a}_{3}}=\frac{\frac{1}{2}}{\frac{1}{4}}=2$,∴${a}_{9}={a}_{5}{q}^{2}=\frac{1}{2}×4=2$.
故选:A.
点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.
练习册系列答案
相关题目
13.设函数f(x),g(x)的定义域为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )
| A. | f(x)•g(x)是偶函数 | B. | f(x)+x2是奇函数 | C. | f(x)-sinx是奇函数 | D. | g(x)+2x是奇函数 |
10.已知定义在R上的函数满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等式f(x)<x+1的解集为( )
| A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-∞,1)∪(1,+∞) |