题目内容

1.已知{an}是等比数列,且 ${a_5}=\frac{1}{2},4{a_3}+{a_7}=2$,则a9=(  )
A.2B.±2C.8D.$\frac{1}{8}$

分析 由已知列式求得a3,进一步求得公比,再由等比数列的通项公式求得a9

解答 解:在等比数列{an}中,由${a}_{5}=\frac{1}{2}$,
得${a}_{3}{a}_{7}={{a}_{5}}^{2}=\frac{1}{4}$,又4a3+a7=2,
联立解得:${a}_{3}=\frac{1}{4}$.
则q=$\frac{{a}_{5}}{{a}_{3}}=\frac{\frac{1}{2}}{\frac{1}{4}}=2$,∴${a}_{9}={a}_{5}{q}^{2}=\frac{1}{2}×4=2$.
故选:A.

点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网