题目内容

13.如果实数x,y满足(x-2)2+y2=2,则$\frac{y}{x}$的范围是(  )
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

分析 设$\frac{y}{x}$=k,求$\frac{y}{x}$的范围就等价于求同时经过原点和圆上的点的直线中斜率的范围,由数形结合法,易得答案.

解答 解:设$\frac{y}{x}$=k,则y=kx表示经过原点的直线,k为直线的斜率.
所以求$\frac{y}{x}$的范围就等价于求同时经过原点和圆上的点的直线中斜率的范围.
从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,
此时的斜率就是其倾斜角∠EOC的正切值.
易得|OC|=2,|CE|=$\sqrt{2}$,可由勾股定理求得|OE|=$\sqrt{2}$,
于是可得到k=1,即为$\frac{y}{x}$的最大值.
同理,$\frac{y}{x}$的最小值为-1,
故选B.

点评 本题考查直线与圆的位置关系,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网