题目内容

已知全集为R,集合A={x|2x≥1},B={x|x2-6x+8≤0},则A∩∁RB=(  )
A、{x|x≤0}
B、R
C、{x|0≤x<2,或x>4}
D、{x|0<x≤2,或x≥4}
考点:交、并、补集的混合运算
专题:集合
分析:解指数不等式求得A,解一元二次不等式求得B,再根据补集的定义求得∁RB,再利用两个集合的交集的定义求得A∩∁RB.
解答: 解:∵集合A={x|2x≥1}={x|x≥0},B={x|x2-6x+8≤0}={x|2≤x≤4},
∴∁RB={x|x<2,或x>4}
则A∩∁RB=[0,2)∪(4,+∞),
故选:C.
点评:本题主要考查指数不等式、一元二次不等式的解法,集合的补集、两个集合的交集的定义和求法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网