题目内容
2.若曲线C1:y=ax2(a>0)与曲线C2:y=e-x有公共切线,则a的取值范围为( )| A. | [$\frac{{e}^{2}}{4}$,+∞) | B. | [$\frac{{e}^{2}}{8}$,+∞) | C. | (0,$\frac{{e}^{2}}{4}$] | D. | (0,$\frac{{e}^{2}}{8}$] |
分析 求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为两函数图象有交点求得a的范围.
解答 解:设公切线与曲线C1切于点(x1,ax12),与曲线C2切于点(x2,${e}^{-{x}_{2}}$),
则曲线C1的导数为y′=2ax,C2的导数为y′=-e-x.
则2ax1=-${e}^{-{x}_{2}}$=$\frac{{e}^{-{x}_{2}}-a{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,
将${e}^{-{x}_{2}}$=-2ax1代入2ax1=$\frac{{e}^{-{x}_{2}}-a{{x}_{1}}^{2}}{{x}_{2}-{x}_{1}}$,可得2x2=x1-2,
∴a=-$\frac{{e}^{-\frac{{x}_{1}}{2}+1}}{2{x}_{1}}$,
记f(x)=-$\frac{{e}^{-\frac{x}{2}+1}}{2x}$,
则f′(x)=$\frac{{e}^{-\frac{x}{2}+1}(x+2)}{4{x}^{2}}$,当x∈(-∞,-2)时,f′(x)<0.
当x∈(-2,+∞)时,f′(x)>0,
∴当x=-2时,f(x)min=f(-2)=$\frac{{e}^{2}}{4}$.
∴a的范围是[$\frac{{e}^{2}}{4}$,+∞).
故选A.
点评 本题考查了利用导数研究过曲线上某点处的切线方程,综合考查导数的应用,综合性较强,难度较大.
练习册系列答案
相关题目
4.设实数x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{x+y-2≤0}\\{x≥-2}\end{array}\right.$,则x2+(y+4)2的取值范围是( )
| A. | [2,68] | B. | [4,68] | C. | [2,2$\sqrt{17}$] | D. | [$\sqrt{2}$,2$\sqrt{17}$] |
17.函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的图象与x轴的交点横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到g(x)=cos(ωx+$\frac{π}{6}$)的图象,可将f(x)的图象( )
| A. | 向右平移$\frac{π}{4}$个单位 | B. | 向左平移$\frac{π}{4}$个单位 | ||
| C. | 向左平移$\frac{π}{2}$个单位 | D. | 向右平移$\frac{π}{2}$个单位 |