题目内容

3.已知全集U=R,集合A={x|2x+a>0},B={x|x>3或x<-1}.
(1)当a=2时,求集合A∩B;
(2)若(∁UA)∪B=R,求实数a的取值范围.

分析 (1)求出a=2时集合A,再根据交集的定义写出A∩B;
(2)化简集合A,根据补集和并集的定义即可得出a的取值范围.

解答 解:(1)由2x+a>0,得$x>-\frac{a}{2}$,
即$A=\left\{{x|x>-\frac{a}{2}}\right\}$;
当a=2时,A={x|x>-1},
所以A∩B={x|x>3};
(2)由(1)知$A=\left\{{x|x>-\frac{a}{2}}\right\}$,
所以∁UA={x|x≤-$\frac{a}{2}$},
又(∁UA)∪B=R,
所以$-\frac{a}{2}≥3$,
解得a≤-6.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网