题目内容
已知无穷等比数列{an}的首项为1,公比为q,它的前n项和为Sn,且Tn=
,求
Tn.
| Sn |
| Sn+2 |
| lim |
| n→∞ |
考点:数列的极限,等比数列的前n项和
专题:计算题,等差数列与等比数列
分析:分q=1和q≠1求出Sn和Sn+2,对于q≠1时再分q=-1、|q|<1、|q|>1分类求得数列极限.
解答:
解:当q=1时,Sn=n,Sn+2=n+2,
∴
Tn=
=
=1;
当q≠1时,Sn=
,Sn+2=
,
Tn=
=
=
.
当|q|<1时,
Tn=
=
=1;
当q=-1时,
Tn=
=
=
=
=1;
当|q|>1时,
Tn=
=
=
=
.
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| n |
| n+2 |
| lim |
| n→∞ |
| 1 | ||
1+
|
当q≠1时,Sn=
| 1-qn |
| 1-q |
| 1-qn+2 |
| 1-q |
| lim |
| n→∞ |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| 1-qn |
| 1-qn+2 |
| lim |
| n→∞ |
| ||
|
当|q|<1时,
| lim |
| n→∞ |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| 1-qn |
| 1-qn+2 |
当q=-1时,
| lim |
| n→∞ |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| 1-qn |
| 1-qn+2 |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| ||
|
当|q|>1时,
| lim |
| n→∞ |
| lim |
| n→∞ |
| ||
|
| lim |
| n→∞ |
| 1-qn |
| 1-qn+2 |
| lim |
| n→∞ |
| ||
|
| 1 |
| q2 |
点评:本题考查了等比数列的前n项和,考查了数列极限的求法,训练了分类讨论的数学思想方法,是中档题.
练习册系列答案
相关题目