题目内容
函数f(x)=
sin2x+(sinx+cosx)(sinx-cosx).
(1)求f(x)的单调区间和对称轴;
(2)若f(θ)=
,其中0<θ<
,求cos(θ+
)的值.
| 3 |
(1)求f(x)的单调区间和对称轴;
(2)若f(θ)=
| 3 |
| π |
| 2 |
| π |
| 6 |
考点:两角和与差的正弦函数,两角和与差的余弦函数,二倍角的余弦,正弦函数的单调性
专题:计算题,三角函数的图像与性质
分析:(1)化简可得f(x)=2sin(2x-
),从而可确定f(x)的单调区间和对称轴;
(2)f(θ)=2sin(2θ-
)=
,0<θ<
,故-
<2θ-
<
,所以2θ-
=
,即有θ=
,从而可求cos(θ+
)的值.
| π |
| 6 |
(2)f(θ)=2sin(2θ-
| π |
| 6 |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
| π |
| 6 |
解答:
解:(1)f(x)=
sin2x+(sinx+cosx)(sinx-cosx)
=
sin2x-cos2x
=2sin(2x-
),
∴f(x)的对称轴为:x=
+
.
∵2kπ-
≤2x-
≤2kπ+
,即有kπ-
≤x≤kπ+
.
∴其单调递增区间为:[kπ-
,kπ+
].
∵2kπ+
≤2x-
≤2kπ+
,即有kπ+
≤x≤kπ+
.
∴其单调递减区间为:[有kπ+
,kπ+
].
(2)f(θ)=
,有f(θ)=2sin(2θ-
)=
,
sin(2θ-
)=
.∵0<θ<
,故-
<2θ-
<
∴2θ-
=
,即有θ=
cos(θ+
)=
cosθ-
sinθ=
.
| 3 |
=
| 3 |
=2sin(2x-
| π |
| 6 |
∴f(x)的对称轴为:x=
| kπ |
| 2 |
| π |
| 3 |
∵2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
∴其单调递增区间为:[kπ-
| π |
| 6 |
| π |
| 3 |
∵2kπ+
| π |
| 2 |
| π |
| 6 |
| 3π |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
∴其单调递减区间为:[有kπ+
| π |
| 3 |
| 5π |
| 6 |
(2)f(θ)=
| 3 |
| π |
| 6 |
| 3 |
sin(2θ-
| π |
| 6 |
| ||
| 2 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴2θ-
| π |
| 6 |
| π |
| 3 |
| π |
| 4 |
cos(θ+
| π |
| 6 |
| ||
| 2 |
| 1 |
| 2 |
| ||||
| 4 |
点评:本题主要考察了两角和与差的余弦函数公式、二倍角的余弦、正弦函数的单调性等综合应用,属于中档题.
练习册系列答案
相关题目
下列各图中,不能表示函数y=f(x)的图象的是( )
| A、 |
| B、 |
| C、 |
| D、 |
已知f(x)=cos 2x-1,g(x)=f(x+m)+n,则使g(x)为奇函数的实数m,n的可能取值为( )
A、m=
| ||
B、m=
| ||
C、m=-
| ||
D、m=-
|