ÌâÄ¿ÄÚÈÝ
| y2 |
| a2 |
| x2 |
| b2 |
| ||
| 3 |
| MF |
| FN |
£¨¢ñ£©ÇóÖ¤£ºµ±¦Ë=1ʱ
| MN |
| AF |
£¨¢ò£©Èôµ±¦Ë=1ʱÓÐ
| AM |
| AN |
| 106 |
| 3 |
£¨¢ó£©ÔÚ£¨¢ò£©µÄÍÖÔ²ÖУ¬µ±M¡¢NÁ½µãÔÚÍÖÔ²CÉÏÔ˶¯Ê±£¬ÊÔÅжÏ
| AM |
| AN |
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨¢ñ£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬F£¨c£¬0£©£¬µ±¦Ë=1ʱ£¬
=
£¬-y1=y2£¬x1+x2=2c£¬ÓÉM£¬NÁ½µãÔÚÍÖÔ²ÉÏ£¬½áºÏÒÑÖªÌõ¼þÄÜÖ¤Ã÷
¡Í
£®
£¨¢ò£©µ±¦Ë=1ʱ£¬ÉèM(c£¬
)£¬N(c£¬-
)£¬
c2+8c+16=
£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ·½³Ì£®
£¨¢ó£©
•
¡Átan¡ÏMAN=2S¡÷AMN=|AF||yM-yN|£¬ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x-2£©£¬ÁªÁ¢
£¬µÃ£¨1+3k2£©y2+4ky-2k2=0£¬ÓÉ´ËÀûÓÃÏÒ³¤¹«Ê½½áºÏÒÑÖªÌõ¼þÄÜÇó³öÖ±ÏßµÄMN·½³Ì£®
| MF |
| FN |
| MN |
| AF |
£¨¢ò£©µ±¦Ë=1ʱ£¬ÉèM(c£¬
| b2 |
| a |
| b2 |
| a |
| 5 |
| 6 |
| 106 |
| 3 |
£¨¢ó£©
| AM |
| AN |
|
½â´ð£º
£¨¢ñ£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬F£¨c£¬0£©£¬
Ôò
=(c-x1£¬-y1)£¬
=(x2-c£¬y2)£¬
µ±¦Ë=1ʱ£¬
=
£¬¡à-y1=y2£¬x1+x2=2c£¬
ÓÉM£¬NÁ½µãÔÚÍÖÔ²ÉÏ£¬
¡à
=a2(1-
)£¬
=a2(1-
)£¬¡à
=
Èôx1=-x2£¬Ôòx1+x2=0¡Ù2cÉᣬ¡àx1=x2£¬
¡à
=(0£¬2y2)£¬
=(c+4£¬0)£¬
¡à
¡Í
£®£¨3·Ö£©
£¨¢ò£©½â£ºµ±¦Ë=1ʱ£¬²»·ÁÉèM(c£¬
)£¬N(c£¬-
)£¬
¡à
•
=(c+4)2-
£¬
ÓÖa 2=
c2£¬b2=
£¬¡à
c2+8c+16=
£¬
ÍÖÔ²CµÄ·½³ÌΪ
+
=1£®£¨8·Ö£©
£¨¢ó£©½â£º
•
¡Átan¡ÏMAN=2S¡÷AMN=|AF||yM-yN|£¬
ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x-2£©£¬£¨k¡Ù0£©
ÁªÁ¢
£¬µÃ£¨1+3k2£©y2+4ky-2k2=0£¬£¨10·Ö£©
¡à|yM-yN|=
£¬
¼Çt=
£¬s=1+3k2£¬
Ôòt=
=
•
£¨11·Ö£©
¡àt¡Ü
£¬µ±s=4£¬¼´k=¡À1ʱȡµÈºÅ£®
²¢ÇÒ£¬µ±k=0ʱ
•
¡Átan¡ÏMAN=0£¬
µ±k²»´æÔÚʱ|yM-yN|=
£¼
×ÛÉÏ
•
¡Átan¡ÏMANÓÐ×î´óÖµ£¬×î´óֵΪ6
£¬
´Ëʱ£¬Ö±ÏßµÄMN·½³ÌΪx-y-2=0£¬»òx+y-2=0£¨14·Ö£©
Ôò
| FM |
| NF |
µ±¦Ë=1ʱ£¬
| MF |
| FN |
ÓÉM£¬NÁ½µãÔÚÍÖÔ²ÉÏ£¬
¡à
| x | 2 1 |
| ||
| b2 |
| x | 2 2 |
| ||
| b2 |
| x | 2 1 |
| x | 2 2 |
Èôx1=-x2£¬Ôòx1+x2=0¡Ù2cÉᣬ¡àx1=x2£¬
¡à
| MN |
| AF |
¡à
| MN |
| AF |
£¨¢ò£©½â£ºµ±¦Ë=1ʱ£¬²»·ÁÉèM(c£¬
| b2 |
| a |
| b2 |
| a |
¡à
| AM |
| AN |
| b4 |
| a2 |
ÓÖa 2=
| 3 |
| 2 |
| c2 |
| 2 |
| 5 |
| 6 |
| 106 |
| 3 |
ÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 6 |
| y2 |
| 2 |
£¨¢ó£©½â£º
| AM |
| AN |
ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x-2£©£¬£¨k¡Ù0£©
ÁªÁ¢
|
¡à|yM-yN|=
| ||
| 1+3k2 |
¼Çt=
| ||
| 1+3k2 |
Ôòt=
| ||||||||
| s |
2
| ||
| 3 |
1+
|
¡àt¡Ü
| 3 |
²¢ÇÒ£¬µ±k=0ʱ
| AM |
| AN |
µ±k²»´æÔÚʱ|yM-yN|=
2
| ||
| 3 |
| 3 |
×ÛÉÏ
| AM |
| AN |
| 3 |
´Ëʱ£¬Ö±ÏßµÄMN·½³ÌΪx-y-2=0£¬»òx+y-2=0£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÏòÁ¿´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß·½³ÌµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²ÏÒ³¤¹«Ê½µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Ë«ÇúÏß
-
=1£¨a£¾0£¬b£¾0£©ÉÏÈÎÒâÒ»µãP¿ÉÏòÔ²x2+y2=£¨
£©2×÷ÇÐÏßPA£¬PB£¬Èô´æÔÚµãPʹµÃ
•
=0£¬ÔòË«ÇúÏßµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| x2 |
| a2 |
| y2 |
| b2 |
| b |
| 2 |
| PA |
| PB |
A¡¢[
| ||||
B¡¢£¨1£¬
| ||||
C¡¢[
| ||||
D¡¢£¨1£¬
|