题目内容

已知集合A={x|x(3-x)>0},集合B={y|y=2x+2},则A∩B=(  )
A、{x|2<x<3}
B、{x|x<0或x>2}
C、{x|x>3}
D、{x|x<0或x≥2}
考点:交集及其运算
专题:集合
分析:求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.
解答: 解:由A中的不等式x(3-x)>0,
解得:0<x<3,
∴A={x|0<x<3},
由B中y=2x+2>2,
即B={y|y>2},
则A∩B={x|2<x<3},
故选:A.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网