题目内容
| p |
| 2 |
| q |
| p |
| q |
| π |
| 4 |
| AB |
| P |
| Q |
| AC |
| P |
| Q |
| AC |
| p |
| q |
| AD |
A、
| ||||
B、
| ||||
| C、7 | ||||
| D、8 |
考点:向量在几何中的应用
专题:计算题,平面向量及应用
分析:由题意,化简
2=(
(
+
))2=
(
+
)2=
(5
+2
+
-3
)2=
(6
-
)2=
(36
2+
2-12
•
)=
(36×(2
)2+32-12×2
×3×cos
)=
×9×25;从而解得.
| AD |
| 1 |
| 2 |
| AB |
| AC |
| 1 |
| 4 |
| AB |
| AC |
| 1 |
| 4 |
| P |
| q |
| p |
| q |
| 1 |
| 4 |
| P |
| q |
| 1 |
| 4 |
| P |
| q |
| P |
| q |
| 1 |
| 4 |
| 2 |
| 2 |
| π |
| 4 |
| 1 |
| 4 |
解答:
解:由题意,
2=(
(
+
))2
=
(
+
)2
=
(5
+2
+
-3
)2
=
(6
-
)2
=
(36
2+
2-12
•
)
=
(36×(2
)2+32-12×2
×3×cos
)
=
×9×25;
故|
|=
=
;
故选A.
| AD |
| 1 |
| 2 |
| AB |
| AC |
=
| 1 |
| 4 |
| AB |
| AC |
=
| 1 |
| 4 |
| P |
| q |
| p |
| q |
=
| 1 |
| 4 |
| P |
| q |
=
| 1 |
| 4 |
| P |
| q |
| P |
| q |
=
| 1 |
| 4 |
| 2 |
| 2 |
| π |
| 4 |
=
| 1 |
| 4 |
故|
| AD |
|
| 15 |
| 2 |
故选A.
点评:本题考查了平面向量在几何中的应用,属于中档题.
练习册系列答案
相关题目
命题p:不等式x2+2x+a≤0的解集不是空集;命题q:函数y=(5-2a)x是增函数.若p或q为真命题,p且q为假命题,则实数a的取值范围是( )
| A、a≤1 | B、a<2 |
| C、1<a<2 | D、a≤1或a≥2 |
在△ABC中,AB=4,M为BC的中点,且AM=1,则∠BAC的最小值为( )
| A、90° | B、120° |
| C、135° | D、150° |