题目内容

14.当x∈[-1,3]时,不等式x2-2x-1≤a恒成立,则a的最小值为2.

分析 设出f(x)=x2-2x-1,求出在[-1,3]的最大值,可得a的范围,进而得到a的最小值.

解答 解:由f(x)=x2-2x-1的对称轴为x=1,
且f(-1)=2,f(3)=2,可得f(x)的最大值为2,
由x2-2x-1≤a恒成立,可得a≥2,
即有a的最小值为2.
故答案为:2.

点评 本题考查函数恒成立问题的解法,注意转化为求函数的最值,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网