题目内容

16.在Rt△ABC中,∠A=90°,点D是边BC上的动点,且|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),则当λμ取得最大值时,|$\overrightarrow{AD}$|的值为(  )
A.$\frac{7}{2}$B.3C.$\frac{5}{2}$D.$\frac{12}{5}$

分析 根据条件建立坐标系,利用基本不等式的性质进行求解即可.

解答 解:将三角形放入坐标系中,
则C(0,4),B(3,0),
∵$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(λ>0,μ>0),
∴λ+μ=1,
则1=λ+μ≥2$\sqrt{λμ}$,即λμ≤$\frac{1}{4}$,当且仅当λ=μ=$\frac{1}{2}$时取等号,
此时$\overrightarrow{AD}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$=$\frac{1}{2}$(3,0)+$\frac{1}{2}$(0,4)=($\frac{3}{2}$,2)
则|$\overrightarrow{AD}$|=$\sqrt{(\frac{3}{2})^{2}+{2}^{2}}$=$\frac{5}{2}$,
故选:C

点评 本题主要考查平面向量的应用,根据条件建立坐标系,利用坐标法是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网