题目内容

6.在三棱锥P-ABC中,PA⊥平面ABC,PA=2$\sqrt{3}$,AC=2,AB=1,∠BAC=60°,则三棱锥P-ABC的外接球的表面积为(  )
A.13πB.14πC.15πD.16π

分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥P-ABC的外接球的表面积.

解答 解:∵AC=2,AB=1,∠BAC=60°,
∴由余弦定理可得BC=$\sqrt{3}$,
∴△ABC外接圆的半径为1,
设球心到平面ABC的距离为d,则由勾股定理可得R2=($\sqrt{3}$)2+12=4,
∴三棱锥P-ABC的外接球的表面积为4πR2=16π.
故选:D.

点评 本题考查三棱锥P-ABC的外接球的表面积,考查学生的计算能力,确定三棱锥P-ABC的外接球的半径是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网